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Abstract

Many rating organizations intentionally coarsen ratings before public presentation,

for example by using a discrete badge rather than a continuous rating. We investi-

gate the impact of coarsening empirically in the context of automobile crashworthiness

ratings. Speci�cally, we construct a univariate continuous crashworthiness rating from

crash test measurements and observed fatality rates. We then estimate a random coef-

�cient model of vehicle demand under status quo coarse ratings and simulate outcomes

under counterfactual continuous ratings. We �nd that consumers alter vehicle choices,

thereby reducing fatalities by 7.4%, which implies 1,850 fewer U.S. fatalities annually.

Finally, we explore whether incentives to produce crashworthy vehicles are reduced

enough to o�set bene�ts of �ner information. We conclude that a continuous rating

format would reduce fatalities.
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1 Introduction

In addition to gathering, verifying, and providing relevant information to consumers, cer-

ti�cation and rating organizations choose how to package and present information. Many

organizations intentionally coarsen information before public presentation. For example,

the two U.S. organizations that evaluate crashworthiness (safety) of vehicles employ a small

number of discrete ratings. A natural question is whether intentionally coarsening ratings

further promotes their missions to reduce deaths, injuries, and economic losses from traf-

�c accidents. We investigate whether a continuous crashworthiness rating would reduce

fatalities relative to a counterfactual scenario with discrete ratings.

It is an empirical question whether coarsening quality ratings improves outcomes. Ceteris

paribus, continuous ratings provide �ner information to consumers. However, there are

several reasons why organizations may prefer to coarsen ratings. For example, coarsening

or otherwise repackaging ratings might increase salience (Dai and Luca, 2020; Luca and

Smith, 2013; Pope, 2009). However, others �nd that coarsened certi�cations may crowd

out consumer e�orts to process more precise information, consequently worsening outcomes

(Farrell et al., 2010; Houde, 2018). We abstract away from these issues and instead focus on

another mechanism. We argue in Section 2.3 that producers may provide less (more) than

the welfare maximizing investments in safety provision when ratings are continuous and

marginal consumers have less (more) than average valuations for safety. Coarsening ratings

may address these ine�ciencies by altering �rm incentives, at least in theory (Costrell, 1994;

Dubey and Geanakoplos, 2010; Zapechelnyuk, 2020).

Even if coarse ratings are optimal in theory, they may not be in practice. Even with

mechanism design expertise, certi�ers may be unable to precisely predict how manufacturers

will respond to ratings thresholds due to inherent uncertainties.1 The risk of poorly setting

thresholds for coarse ratings may outweigh any theoretical gains from coarsening ratings.

The economics literature has examined a variety of mechanisms policy makers can use

to yield desired outcomes. In the context of vehicles, government organizations can require

certain features (Golovin, 2019) or tax undesirable features (e.g., the gas guzzlers tax). A

less heavy-handed approach is to report quality ratings to consumers. Others �nd that

ratings do in�uence choices (Anderson and Magruder, 2012; Bollinger et al., 2011; Hastings

and Weinstein, 2008; Jin and Leslie, 2003; Jin and Sorensen, 2006; Luca, 2016; Tadelis and

Zettelmeyer, 2015), and that �rms strategically manipulate and selectively disclose quality

ratings (Fan et al., 2016; Garate and Newbury, 2019; Luca and Smith, 2015; Luca and Zervas,

2016; Mayzlin et al., 2014; Proserpio and Zervas, 2017). For an overview, see Dranove and

Jin (2010). We focus on a related topic: the impact of ratings' format choices.

Vehicle crashworthiness ratings are an auspicious context for study. The gains from

1In the context of crashworthiness ratings, safety certi�ers appear to follow the medical literature�not
the economics literature�when designing coarse rating thresholds.
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improved ratings may be large; vehicle accidents take a signi�cant economic toll of $242

billion (in 2010) and are the 11th leading cause of death in the United States.2 If �ner ratings

were made available, would customers choose di�erent vehicles? Would manufacturers invest

more or less in safety? Would there be fewer vehicular fatalities?

To investigate consumer choices under a counterfactual rating scheme, we �rst construct

continuous crashworthiness ratings by relating fatalities to vehicle features and measure-

ments from staged crash tests, yielding vehicle-speci�c probabilities of driver death. Next,

we estimate vehicle demand under status quo coarse crashworthiness ratings using a ran-

dom coe�cient discrete choice model. We then simulate consumer choices and resulting

death rates under a continuous crashworthiness rating, and examine the plausibility that a

continuous rating could alter incentives for safety provision in a way that o�sets gains from

providing �ner information to consumers.

A challenge when estimating crashworthiness from fatality data is that fatality rates

depend on two components: (i) a vehicle's inherent ability to protect its occupants (our

object of interest), and (ii) the behaviors of drivers who select di�erent vehicles. The latter

has been shown to be potentially large: Levitt and Porter (2001) found that drunk drivers

are 13 times more likely to be involved in fatal accidents, and Jin and Vasserman (2018),

Reimers and Shiller (2019), and Soleymanian et al. (2019) have shown that drivers have het-

erogeneous accident risks and decrease accident risk dramatically when explicitly monitored

and �nancially incentivized to avoid unsafe behaviors.

Of particular concern for our study is the possibility that latent driver behaviors and

crash test ratings are correlated. For example, if drivers with safe driving habits dispro-

portionately choose vehicles with better reported safety ratings, then we risk attributing

the reduction in fatalities from cautious habits to a vehicle's inherent ability to protect its

occupants.3

Existing studies have attempted to address this selection concern in various ways. Some

studies assume away this selection problem (Metzger et al., 2015; Teoh and Lund, 2011).

Harless and Ho�er (2007) use vehicle nameplate �xed e�ects to control for varying habits

across drivers of di�erent nameplates, but they discount the possibility that cautious drivers

may choose a given nameplate only when it is awarded a safety badge. Ryb et al. (2010)

explicitly control for accident speed in expertly reconstructed accidents, but speeds are

lumped into two groups, which limits the e�ectiveness of these controls. Others (Farmer,

2005; Kullgren et al., 2010; Lie and Tingvall, 2002) focus on two-vehicle accidents to control

for the magnitude of force at impact (following Newton's third law of motion). However,

2https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812013
3Safety improvements might directly impact driving behaviors of rational consumers (Peltzman, 1975)

by reducing the costs/risk associated with bad driving behaviors. Empirical tests of this o�set hypothesis

yield inconsistent �ndings (Cohen and Einav, 2003; Peterson et al., 1995; Sen, 2001; Traynor, 1993; Winston
et al., 2006).
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it remains possible that the more aggressive/faster vehicle may experience worse secondary

outcomes after the initial collision or safety features like well-designed crumple zones limit

injury risk of occupants in both cars, including the vehicle collided with, thereby confounding

comparisons. In Section A.3, we provide evidence that the selection of safer drivers remains

an important confounder in the two-vehicle crash analyses used in the best previous studies of

vehicle crashworthiness. Our method addresses the selection issues that confound results in

the existing literature and estimates overall crashworthiness across the empirical distribution

of di�erent accident types, including single-vehicle accidents (e.g., vehicle crashing into a

tree), which accounted for 55% of fatal accidents in 2017.4

Our method for addressing selection of drivers with safer habits is similar to the re-

gression discontinuity strategy used to estimate the causal impact of ratings on consumer

choices (Luca, 2016; Anderson and Magruder, 2012). We include both continuous measures

of crashworthiness (which are not observed by consumers), as well as observable discrete

crashworthiness measures as explanatory variables. Fatality risk presumably increases con-

tinuously in measures of injury risk and cabin intrusion. But a discontinuity might exist at

the threshold for a higher reported discrete rating if driver selection to safer-rated vehicles

is meaningful. In Luca (2016) and Anderson and Magruder (2012), the discrete change at

the discontinuity is the object of interest. However, our goal is to estimate the disconti-

nuity only so we can remove it (and thus the impact of driver selection) from our fatality

rate predictions, thereby inferring the causal relationship between these measures and the

likelihood a typical driver dies while driving a given vehicle.

Our estimates show that continuous ratings provide substantially more information, lead-

ing consumers to alter vehicle purchase decisions in counterfactual simulations. As a result,

simulations suggest that switching to a continuous rating would reduce fatalities by 7.4%,

implying an annual reduction of 1,850 fatalities in the United States. Consumer welfare

is predicted to rise by about $7 billion over �ve observed years. It is possible that manu-

facturers would respond to continuous ratings by lowering investments in crashworthiness.

However, we provide evidence that manufacturer response would need to be large to o�set

these gains, and we document market features that suggest the bene�ts of a discrete rating

are small in this setting.

The rest of the paper is organized as follows. Section 2 provides an industry background

and discusses the theoretical bene�ts of coarse ratings. Section 3 describes the data. Section

4 describes our continuous crashworthiness ratings, and Section 5 presents the model of

consumer demand for vehicles. Section 6 reports demand estimates and counterfactual

predictions. A brief conclusion follows.

4Jacobsen (2013) uses fatalities in single-car accidents beyond levels implied by crash tests measurements
to control for relative di�erences in driving behaviors across vehicle classes. However, to separate signal
from substantial inherent noise in vehicle level fatality rates due to their rarity, vehicles are pooled into ten
groups, obscuring the di�erences between vehicles in the same class required for our analyses.
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2 Background

2.1 Organizations That Rate Crashworthiness

In the United States, there are two well-known institutions o�ering vehicle crashworthi-

ness ratings: the National Highway Tra�c Safety Administration (NHTSA), a government

agency, and the Insurance Institute for Highway Safety (IIHS), an independent non-pro�t

historically funded by insurers. The stated mission of both is to improve automotive safety.

A major and growing focus of both organizations is crash test safety ratings. The NHTSA

and IIHS both began reporting crashworthiness ratings in the 1990s.5 Initially, each used

just one crash test: a frontal collision into a �xed barrier.6 The NHTSA and IIHS added

side crash tests in 1996 and 2003, respectively.7 The NHTSA added a measure of rollover

risk in 2000, and the IIHS added a roof strength test in 2009. In 2012, the IIHS added

a more stringent frontal crash test where only 25% of the front collides with the barrier

(on the driver's side), and in 2017 they added an analogous test for the passenger's side.

Both organizations note that comparisons of frontal collision tests are valid only between

vehicles of similar weight, whereas side and rollover tests are comparable across weight

classes. The IIHS has recently added tests evaluating headlights and automatic emergency

braking, although these ratings were typically based on optional packages or select trims.

Crashworthiness ratings are highly visible. The ratings from the IIHS and NHTSA

are prominently shown in automobile reviews on websites like ConsumerReports.com, Ed-

munds.com, and USNews.com.

2.2 Format of Ratings

The continuous measures from crash tests are reported in inconspicuous technical reports,

and understanding many continuous variables may be challenging and time-consuming for

consumers. Therefore, both agencies transform the continuous measurements into simpli�ed

scores that are featured on their respective websites and publications. Both agencies elect

to report discrete scores.

The NHTSA reports separate discrete scores for each crash test type (e.g., side, front)

on a �ve-star scale, and report an overall rating also on a �ve-star scale. Most vehicles earn

four or �ve stars. Ratings below three stars are rare.

The IIHS reports a discrete four-point scale for each test type (good, acceptable, marginal,

5Crash test milestones: NHTSA: https://www.nhtsa.gov/ratings, IIHS: http://www.iihs.org/

iihs/about-us/milestones.
6The NHTSA uses a full head-on collision, and the IIHS uses a partial overlap collision.
7The NHTSA side-crash test involves a car-like object crashing into the tested vehicle, and the IIHS

involves a SUV/truck like object with a higher point of impact on the tested vehicle.
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or poor), and then awards �Top Safety Picks� based on evolving criteria. A link to vehicles

awarded �Top Safety Pick� badges is prominently shown on the ratings landing page (see

Figure 1), and �Top Safety Pick� badges are also prominently shown on pages for speci�c

vehicles.

The relationship between discrete and continuous scores is well illustrated by the IIHS's

side-impact crash test. A separate discrete subrating (good, acceptable, marginal, or poor)

is assigned to the vehicle structure and each of four separate injury regions. The scores

from these �ve subcategories are combined to reach the overall side-impact rating, using a

demerits-based system described shortly.

The vehicle structure subrating in the side-impact crash test is based on a single con-

tinuous measurement: the �nal location of the vehicle's central side pillar (known as the

B-pillar) relative to the driver's seat center line, after the stationary vehicle is struck by a

1500 kg (about 3300 lb) barrier moving at 50 kph (about 31 mph).8 The extent of intrusion

is mapped to a discrete subrating according to the criteria in Figure 2.

The injury subratings for each body region (head, neck, torso, pelvis/femur) are intu-

itively similar. Each injury region includes several distinct measurements, each with its own

discrete score. The discrete rating for the injury region equals the worst discrete rating

among its subcomponents.9

Finally, the �ve subratings (vehicle structure, as well as injury regions: head, neck, torso,

pelvis/femur) are combined into an overall side-impact crash test rating using a demerits-

based system depicted in Appendix Table A2.10 Ratings for other crash tests (e.g., moderate

overlap frontal collision) are constructed similarly.11 The criteria for awarding �Top Safety

Pick� badges, which are prominently shown, change most years, but are based on the discrete

scores for each crash test type.

The NHTSA's mapping of continuous measurements to discrete scores (stars) is less

complicated. Before 2011, only two injury measures were used in the frontal crash test, the

Head Injury Criteria (HIC), and the chest G-force. Awarded number of stars depended on

total chance of serious injury to either the head of chest (see Appendix Figure A1). The

NHTSA's discrete crash rating for side collisions was calculated similarly. In 2011, to make

the ratings more stringent, the NHTSA included additional injury measures, used more

stringent thresholds along with a smaller crash test dummy, and added a side-pole crash

8�IIHS Side Impact Test Program � Rating Guidelines.� https://www.iihs.org/media/

2104caa9-7f7e-41fa-a4a5-af65f1cab89e/l9AWAw/Ratings/Protocols/current/side_impact_guide.

pdf
9�Side Impact Crashworthiness Evaluation � Guidelines for Rating Injury Measures.� https:

//www.iihs.org/media/ba19c647-c2e7-4341-8f12-fe84b0e68a21/9mhzGw/Ratings/Protocols/

current/measures_side.pdf
10�Side Impact Crashworthiness Evaluation � Weighting Principles for Vehicle Ratings.� https:

//www.iihs.org/media/eda4bd5a-06a8-4c8e-9b7e-a89ce7b822b0/snHVbw/Ratings/Protocols/

current/side_impact_weighting.pdf
11IIHS thresholds for continuous measurements have not changed over time.
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test.12

2.3 Ratings Format and Welfare

In this subsection, we �rst argue that �rms may provide more or less than the utilitarian

welfare maximizing level of investment in safety features when the exact safety level is

conveyed to consumers via a continuous crashworthiness rating. We then argue that a

discrete rating system may alleviate these ine�ciencies in theory, but may not in practice.

When choosing safety levels of their vehicles, �rms trade o� the costs of improving

crashworthiness with the corresponding increase in revenues. The extent to which �rm j's

revenues increase as crashworthiness of their vehicle improves depends on the value placed

on safety among consumers who are nearly indi�erent between �rm j's product and some

other �rm's product. Firms will invest more in safety if these marginal consumers have

higher valuations for safety, and vice versa. How much captive consumers value safety may

be irrelevant; small changes in crashworthiness may not impact their product choice.

However, a social planner should trade o� the costs of improving safety with the total

bene�t to all consumers and third parties, including consumers who are captive to one of the

�rms. Assume for the moment that the only two parties impacted by investments in safety

are consumers and manufacturers. If marginal consumers have much higher valuations for

safety than captive consumers, then �rms may provide more than the utilitarian welfare

maximizing level of investment in safety features. Alternatively, if marginal consumers

have relatively low valuations for safety, �rms may provide less than the utilitarian welfare

maximizing levels of investments in safety features. Thus, perfect information conveyed

through continuous crashworthiness ratings does not necessarily result in �rms providing

welfare maximizing levels of safety features.

Additionally, a social planner may consider the welfare of third parties such as insurers,

�rst responders, hospitals, and relatives and friends of those harmed in accidents. These

additional considerations may also in�uence the utilitarian welfare maximizing level of safety

provision.

Suppose a regulator would prefer that �rms invest less in safety provision than they

do when a continuous safety rating is reported. A regulator could achieve this goal by

reporting a binary measure of whether the welfare maximizing level of safety has been met

or exceeded. Firms would not be recognized for safety improvements beyond the threshold

and thus would have no incentive to provide them.

Perhaps a more interesting question is whether a more stringent binary safety threshold

could induce �rms to invest more in safety features compared to when a continuous measure

is reported. Firms whose e�ort under continuous ratings would be near but still below

12https://www.consumerreports.org/cro/2011/08/crash-test-101/index.htm
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the threshold after coarsening have a choice. If they increase their e�ort slightly, they will

be recognized as safe after ratings are coarsened. Otherwise, after coarsening they will be

pooled with unsafe vehicles and recognized as unsafe. Costrell (1994) and Zapechelnyuk

(2020) show that such agents below but near the threshold increase e�ort when ratings are

coarsened. Thus, coarsening can increase incentives, at least for some agents. However,

agents lack incentives to exert e�ort beyond the coarse ratings threshold because their

additional e�ort would not be observed. Therefore, other agents who already exceeded the

threshold may reduce their e�ort to the threshold after ratings are coarsened. One might

mitigate this concern by adding additional discrete ratings for such agents to strive for.

But using more thresholds diminishes the incentive e�ects from having discrete thresholds

(Dubey and Geanakoplos, 2010).

While discretizing ratings may improve outcomes in theory, it may not in practice because

poorly set thresholds may reduce welfare. With a discrete rating system, �rms are not

recognized for exerting e�ort beyond the threshold and thus have no incentive to do so. If

the threshold is set too low, then �rms will underinvest in safety features. If the threshold

is set too high, then �rms may forgo attempts to meet the threshold. If there is inherent

uncertainty as to how �rms will respond, then there may be no threshold that improves ex-

ante expected investments in safety. The risks of setting a harmful threshold may outweigh

the small gains achieved if the ex-post optimal threshold happens to be chosen.

3 Data

We use a novel dataset of automobile sales, characteristics, and fatalities compiled from

multiple data sources. Because the component datasets have varying units of analysis and

time horizons, we construct two main datasets: one used for demand estimation, and the

other for analyzing vehicle crashworthiness. We describe both datasets in turn below.

3.1 Data for Demand Estimation

The �rst set of data are used to estimate demand for vehicles. We use monthly new auto-

mobile sales in the United States by nameplate and model year provided by the Alliance

of Automobile Manufacturers. The data span 60 months, from January 2013 to Decem-

ber 2017, and include all vehicles for sale during that period, including model years 2012

and 2018.13 We exclude passenger vans and �supercars� with real prices exceeding $50,000

measured in 1983 dollars (about $130,000 in current dollars).

We link these data with vehicle characteristics sourced from Wards Automotive Reports.

13We limit observations of a vehicle to the �rst 24 months it is for sale, and censor monthly sales below
25 units.
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These include static characteristics such as car dimensions (length, width, height, weight),

body style, drive type (2WD/4WD), horsepower, combined fuel economy, and manufacturer

suggested retail price (MSRP).14 We also link these data with U.S. Environmental Protection

Agency (EPA) data on which vehicles were subject to a �gas-guzzler� tax and which hybrid

and electric vehicles were eligible for a federal tax credit.15 We also note vehicle class

designated by Wikipedia: luxury, sports, executive, or crossover.

To these data, we add safety ratings information recorded by the IIHS. For each name-

plate and model year combination evaluated by the IIHS, we record the continuous measure-

ments from staged crash tests and the discrete ratings reported to consumers (see Section

2.2 above). IIHS also records whether the vehicle was awarded either a �Top Safety Pick� or

�Top Safety Pick+� badge, the latter of which typically depended on optional features not

included on the base model.16 We subsequently designate any vehicle that receives an IIHS

badge of either type as an IIHS badge award winner.

We combine these time-invariant data with time-varying customer incentives (price dis-

counts) by nameplate/model year combination, from Automotive News' Data Center. These

rebates provide a useful source of variation in monthly prices for the vehicles in our data.

Our �nal price variable equals MSRP of the base model less any consumer incentives and

federal tax credits for qualifying hybrid/electric vehicles, plus the �gas-guzzler� tax if appli-

cable. Price is measured in 10,000s of 1983 dollars, using the consumer price index to de�ate.

Additionally, we use monthly petroleum prices and vehicle fuel economy to construct time-

and vehicle-speci�c gas mileage per dollar (MPD), measured in hundreds of 1983 dollars.

Finally, we collect information related to the number and types of households in the

market. We assume each household buys at most one new vehicle each year. The assumed

monthly market size equals the total number of households in the United States divided by

the (12) months in the year.

The �nal dataset records monthly sales and prices of 1,727 nameplate/model-year combi-

nations from 2013 through 2017. Trends in vehicle sales and characteristics are summarized

in Table 1. Note that the fraction of vehicles awarded an IIHS badge �uctuated substantially,

in part due to evolving standards.17 However, a typical consumer may have been unaware

of these evolving criteria because the changes were not prominently noted. Average monthly

sales for 2012 and 2018 model years are lower than other model years because these vehicles

were in the waning or waxing end of their market evolution cycle. The strong non-monotonic

relationship between a vehicle's age and sales, depicted in Appendix Figure A2, suggests

that we must be cognizant of the impact of age on novelty and inventory variety�of colors,

14In case of multiple trims, we use characteristics for the base model for that year. Any missing car
characteristics are manually imputed from Edmunds.com.

15see:www.fueleconomy.gov and www.epa.gov/fueleconomy/gas-guzzler-tax
16Vehicle nameplate model-years that are not rated by IIHS but do record sales are designated as not

receiving a �Top Safety Pick� badge.
17See, for example: https://www.autoblog.com/2013/12/19/iihs-2013-safest-vehicles-video/.
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trims, and optional package (Copeland et al., 2011)�when estimating demand.

3.1.1 Microdata

We supplement the aggregate data with individual-level data from the 2017 National House-

hold Travel Survey [NHTS] (U.S. Department of Transportation, 2019). These data are used

to construct the distribution of demographics and �nd associations between household traits

and product characteristics to form supplemental micro moments.

The NHTS dataset contains household demographics and vehicle ownership for 129,696

households. With provided weights, the data constitute a representative sample of U.S.

households to draw agent data from.18

We �nd meaningful correlations between household traits and product characteristics of

chosen vehicles. The correlation between a household's highest education level on a three-

point scale [1 = no college degree, 2 = bachelor's degree, 3 = graduate degree] and IIHS badge

indicator is ρ = 0.07. We also observe a strong correlation between rural indicator and IIHS

badge indicator (ρ = −0.07). Additionally, we observed strong correlations between vehicle

size and indicators for children in household (ρ = 0.14) and rural location (ρ = 0.16), and

between minivan indicator and child indicator (ρ = 0.18). The analogous set of covariances

are used to form the micro moments described in Section 5.1. The relationship between

child indicator and IIHS badge indicator was disregarded because, surprisingly, the pairwise

correlation was quite weak (ρ = −0.01).

3.2 Data for Constructing Counterfactual Crashworthiness Ratings

The second dataset includes information on the IIHS safety badge status and crash test

measurements for 3,011 distinct vehicles (nameplate and model-year combinations) between

model years 2005 and 2018 from the IIHS's website. These data contain numerous mea-

sures of extent of cabin intrusion and dummy injury severity. Trends in select crash test

measurements are reported in Table 2. Note that the measures have declined in magnitude

over time, implying lower levels of injury and less cabin intrusion for newer models, at least

on average.

These crashworthiness measurements are combined with vehicle characteristics from

Wards Automotive Reports, quarterly driver fatalities from the Fatality Analysis Report-

ing System (U.S. Department of Transportation, c), and cumulative production from the

Early Warning Reporting database (U.S. Department of Transportation, b).19 The result-

18Monthly annualized income�measured in in�ation-adjusted 1983 dollars�are imputed from static in-
come data and the relative CPI index in other periods. Other demographics are assumed unchanged through-
out.

19Any missing vehicle characteristics are again imputed manually from Edmunds.com.
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ing dataset contains time-invariant vehicle characteristics and crash test measurements sepa-

rately for each combination of nameplate and model year, along with corresponding quarterly

fatalities and cumulative production between 2005 and 2017.20

Because driver fatalities are only one among a range of downstream crash-related out-

comes, we assemble an analogous dataset on crashes from the Crash Report Sampling System

((U.S. Department of Transportation, a); also known as the General Estimates System pre-

2016). These data are collected across 60 sampling sites across the United States for the

years 2011-17. Unlike the FARS data wherein records exist only for accidents where one

or more people have died, these data enumerate outcomes for all crashes reported to police

in the sampling sites and measure three possible injury levels: minor, major, or death. We

similarly combine these data with information on IIHS safety badge status and crash test

measurements, vehicle characteristics, and cumulative production.

3.3 Preliminary Evidence of Manufacturer Response to Ratings

The response of manufacturers to new crash test categories provides strong suggestive ev-

idence that manufacturers design vehicles with crashworthiness ratings in mind. Figure 3

shows the evolution of average IIHS crashworthiness ratings (on a four-point scale from

1 [�poor�] to 4 [�good�]), separately by crash test type and model year. Note that when

new tests are introduced, average ratings are rather low but improve quickly, suggesting

that manufacturers respond. Note, for example, that in 2012, when the driver's side small

overlap frontal crash test was introduced, the average score was about 2 (marginal). In re-

sponse, manufacturers redesigned the structure of 97 di�erent models for the U.S. market.21

By 2016, three fourths subsequently scored �good,� the best possible rating.22 However, the

IIHS remained suspicious that manufacturers were intentionally focusing on safety improve-

ments captured by the driver's side crash test and were ignoring the untested passenger's

side. After con�rming these suspicions using a small sample of vehicles, the IIHS added

the passenger's side small overlap frontal test to their protocol in 2017. As Figure 3 shows,

average scores on the passenger's side were much lower than the scores on the analogous

test on the driver's side in 2017 and 2018, con�rming the suspicion that manufacturers

had primarily strengthened parts of the vehicle that they expected to be directly tested by

independent ratings organizations.23

Additionally, there is evidence of clumping of continuous measurements just surpassing

the thresholds. We demonstrate this using the IIHS side impact crash test, which was

20We use FARS' vehicle identi�ers as the unit of observation in the fatality analysis dataset. Their
identi�ers sometimes combine multiple nameplates in a single identi�er.

21https://www.iihs.org/news/detail/small-overlap-gap-vehicles-with-good-driver-protection-may-leave-passengers-at-risk
22Ibid.
23Among vehicles with a passenger's side small overlap frontal crash test rating in 2017, the average passen-

ger's side rating on a four-point scale (from 1=poor to 4=good) was 2.3, much lower than the corresponding
average driver's side rating (3.4).
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introduced just prior to the beginning of our sample (introduced in 2003), and which records

a smaller number of underlying continuous measurements (16 measurements). Recall that

each continuous measurement is assigned a discrete score, which are then combined to yield

an overall rating for the side crash test. We focus on the four continuous measures that

had the lowest average assigned discrete scores in 2005, thus having the most room for

improvement. Figure 4 shows histograms of these continuous submeasures, in both 2005

and a decade later. Note that higher values imply more cabin intrusion and greater injury

severity; thus, lower scores are better. For two of these measures�the B-pillar measure

of structural integrity and rib de�ection�there is obvious clumping of scores just below

the thresholds, which, if exceeded, yield worse subratings. In 2015, the clumping is more

pronounced near the lowest threshold, which corresponds to the highest ratings. We view this

clumping as evidence that manufacturers respond to tests, especially considering that there

are factors that should mitigate such clumping: (i) there are many submeasures included in

the ratings that are simultaneously impacted by vehicle design choices, and (ii) the IIHS is

not the only crash test organization (although is arguably the most stringent), because there

are other domestic (NHTSA) and international (e.g., Europe's NCAP and Japan's JNCAP)

ratings agencies that may also in�uence manufacturers' design choices.

3.4 Inferring Mechanisms for Improving Safety

A pertinent question is whether safety improvements mostly impact variable costs, or

whether they incur higher �xed costs of development. To investigate, we analyze whether

�rms are more likely to improve safety enough to earn a safety badge when they redesign

their vehicle. Speci�cally, we collapse the data so that each nameplate and model-year com-

bination appears only once, and restrict the data to nameplate/model-year combinations

that were tested by the IIHS.24 We then regress an indicator for newly acquiring a safety

badge on an indicator denoting whether the model year was a major redesign, yielding the

following results:

1(Newly Earned Badgevτ ) = 0.03 + 0.11× 1(Newly Redesignedvτ ) + εvτ ,

(0.01) (0.01)
(1)

where v denotes nameplate and τ denotes model year. The results of this linear probability

model imply that nameplates that did not experience a major redesign began earning a

safety badge only about 3% of the time, whereas newly redesigned vehicles began earning

a safety badge 0.03 + 0.11 = 14% of the time.25 Hence, most observed safety improvements

24We exclude nameplate/model years observations when the preceding model year was not evaluated by
the IIHS.

25Similar results were obtained in a analogous regression that included model year �xed e�ects to account
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coincided with major redesigns, suggesting that many safety improvements require a �xed

cost of development. Unfortunately, without access to worldwide sales and pro�ts of vehicles,

it is not possible to estimate the �xed costs of improving safety. It is therefore not possible

to predict investments in safety provision under counterfactual rating schemes. Instead, we

investigate whether market features are favorable for using coarsened ratings to increase

incentives for safety provision.

4 A Model of Vehicle Crashworthiness

4.1 Estimating Fatality Risk

In order to evaluate counterfactual scenarios with a univariate continuous crashworthiness

rating�which did not exist�we must �rst construct such a rating. We do so by relating

driver deaths in vehicle j and period t to static crash test measurements and characteristics

and time-varying controls.26 We use a binary logit model. Let the probability a driver of

vehicle j dies from an accident in period t equal F (xj`t|γ`t) =
exp(

∑
` xj`tγ`t)

1+exp(
∑

` xj`tγ`t)
, where xj`t

denotes crash test measurements, vehicle characteristics, and other controls, and γ`t denotes

parameters to be estimated. The log-likelihood objective function is:

LL =
∑

j

∑

t

Djt × ln (F (xj`t|γ`t)) + (Qjt −Djt)× ln (1− F (xj`t|γ`t)) , (2)

where Djt denotes the number of drivers of vehicle j dying in period t, and Qjt denotes

cumulative production of vehicle j.

There are two main threats to causal inference. First, there are several potential con-

founders that may be correlated with crash test measurements. The �rst is vehicle age.

If wear and tear reduces crashworthiness, we would observe higher fatality rates for older

vehicles.27 Because older model-years also tend to have worse crash test measurements, we

might falsely attribute the higher fatality rates (in later years) to lower safety ratings if we

do not control for vehicle age. Similarly, if there are any time-varying reductions in fatalities

due to factors other than vehicle design (e.g., improved lighting on highways, drunk driving

programs), then vehicles released later face safer road conditions on average. Because vehi-

cles released later also tend to have better crash test measurements, we risk con�ating the

for variation in badge requirement stringency.
26We focus on driver deaths, as is common in the literature, because every car has a driver. Focusing on

passenger deaths con�ates crashworthiness with variation across vehicles in the frequency in which passenger
seats are occupied.

27We remain agnostic to the reason vehicles have more driver deaths as they age. In unreported analyses
using public tra�c citations data, we �nd evidence that the rate of tra�c citations increases with vehicle
age, suggesting changes in driving composition at least partially explains the increased rate of driver deaths
as vehicles age.
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impact of improved vehicle designs and road conditions if we do not control for time e�ects.

Finally, safety features added in later years that are not measured by crash tests may also

be correlated with safety features that are measured by crash tests. Therefore, to yield an

unbiased estimate of the in�uence crash test measurements have on fatality rates, we must

control for the year each vehicle was designed. These confounders (age/time/other design

trends) are all observed. Whether they can be included as controls depends on whether or

not they are separately identi�ed.

A feature of the auto industry can be exploited to control for the aforementioned con-

founders: age, time/changing road conditions, and design year/trends in unobserved safety

improvements. Blonigen et al. (2017) note that changes between model years are typically

super�cial. Major redesigns occur only about every 5 years. In fact, the IIHS exploits this

feature, assigning the same crash test ratings and measurements to all model-years between

substantive structural redesigns. For example, the 2010 model-year and 2014 model-year

Ford Tauruses are structurally nearly identical and should be approximately equally crash-

worthy immediately after leaving the production line. Thus, following the intuition from

Farmer and Lund (2006, 2015), di�erences in fatality rates between 2014 model-year vehi-

cles in 2014, and 2010 model-year vehicles in 2010, if not redesigned in the interim, can

be attributed to changing road conditions. Di�erences in fatality rates occurring in 2014,

between the 2010 and 2014 model-years, can be attributed to the di�erences in their age

because they face the same road conditions. After controlling for age and time, marginal

di�erences in fatality rates for vehicles redesigned in the interim can be attributed to design

changes, which are measured by design-year �xed e�ects and crash test measurements.

The second threat to causal inference is driver selection. For example, a consumer who

is unusually concerned about safety might both choose to drive exceptionally cautiously and

to buy a vehicle with good observed crashworthiness ratings. If not addressed, one might

con�ate the impacts of driver habits and crash tests measurements on driver death rates.

In Appendix Section A.3, we provide evidence suggesting that the gold-standard method

previously used to control for this selection issue was inadequate.

Our identi�cation strategy exploits the discrete nature of reported ratings. Suppose, for

example, that two nearly identical vehicles earn identical ratings on all crash test measures

except one. Suppose cabin intrusion in the B-pillar test measure is 12.4 cm in one vehicle,

and 12.5 cm in the other vehicle. Because only the latter exceeds the threshold, only the

former vehicle receives a top safety score. Hence, while these measurements are very similar,

implying nearly identical crashworthiness, consumers may believe that the �rst vehicle is

meaningfully safer. This might lead drivers who care more about safety, and who might drive

exceptionally cautiously, to sort into the vehicle with the badge, even though the two vehicles

are approximately equally crashworthy. Therefore, di�erences in fatality rates across these

two vehicles are presumably attributable to driver composition rather than vehicle design.

Similarly, di�erences in crash measurements that do not lead to di�erent discrete ratings are
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presumably unobserved by consumers and therefore should not lead to sorting of cautious

drivers. Hence, di�erences in driver death rates between vehicles with the same discrete

rating observed by consumers but di�erent crash test measurements (observed only by the

researcher) can be attributed to di�erences in vehicle design.

Intuitively, this reasoning is analogous to the reasoning behind a regression discontinuity

design. However, unlike the standard regression discontinuity design, the break at the dis-

continuity (for a di�erent safety rating) is not the object of interest, but rather a confounder

that must be accounted for and removed from predictions.

To account for the impact of selection of cautious drivers, we include both the discrete

score�an indicator variable denoting whether the vehicle was recognized with an IIHS �Top

Safety Pick� or �Top Safety Pick+� badge�and continuous measures of injury and cabin

intrusion from staged crash tests. Then, when predicting a vehicles' inherent crashworthiness

using the model, we reassign the value of the IIHS badge indicator to the production-

weighted average value across vehicles, thereby removing impacts of driver composition on

predicted fatality rates.

In Table 3, we report our estimates for various speci�cations. In all speci�cations, we

omit the �rst seven quarters after a given vehicle (denoted by nameplate and model-year)

commences production to avoid biases arising from unknown numbers of unsold vehicles

sitting on dealer lots.

The �rst column of Table 3 includes only age and time �xed e�ects and the year the vehi-

cle was last redesigned. Next, we consider the 26 continuous measurements of cabin intrusion

and dummy injury from the moderate-overlap frontal crash test, the 16 continuous measure-

ments from the side-overlap test, and the discrete safety rating (has safety badge/does not).

To alleviate concerns of over�tting, we incorporate and estimate a LASSO penalty param-

eter using 10-fold cross validation. We apply the penalty only to the continuous crash-test

measurements and restrict their coe�cients to have the anticipated (weakly positive) sign,

implying more intrusion and more force to the crash test dummy raises fatality risk. Esti-

mating an unrestricted estimation model after selecting variables via LASSO regularization

has been shown to improve model �t while retaining convergence rates (Belloni et al., 2011,

2013).28 Thus, we report the unpenalized binary logistic model with the 16 selected vari-

ables in Column 2. In the third column, we add vehicle dimensions as additional explanatory

variables. In Column 4, we include vehicle weight, horsepower and �xed e�ects for vehicle

body style and class. In the �nal column, we put in �xed e�ects for each combination of

make, nameplate, and design period (e.g., all model years between major redesigns). These

�xed e�ects approximate all di�erences in crashworthiness across vehicles.

Next, we compare the relative values of the pseudo R-square across models. Adding

28Also see discussion in Section 3.8.5 in Friedman et al. (2001), https://web.stanford.edu/~hastie/
ElemStatLearn/printings/ESLII_print12.pdf
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crash test measurements increases the pseudo R-square from 0.0021 to 0.0062. Adding in

size and dimensions increases the pseudo R-square to 0.0081. Including �xed e�ects for

car body style and class further increases the pseudo R-square to 0.0095. Including �xed

e�ects for each combination of nameplate and design generation, thereby accounting for all

meaningful design di�erences across vehicles, only raises the pseudo R-square to 0.0129, due

to the inherent randomness of fatal accident frequency for a given nameplate in a given

quarter. The pseudo R-square remains low in the last speci�cation, even though the last

model is likely over�t. Hence, this exercise suggests that much of the explainable variation

in fatality rates across vehicles is attributable to continuous crash test measurements from

the front and side crash tests and basic vehicle characteristics.

Note that the coe�cient on year designed is negative and signi�cant in the �rst speci�-

cation, suggesting that vehicles have in fact become more crashworthy over time. However,

once the crash test measurements are included in speci�cations 2 and 3, the coe�cient on

year designed becomes positive, small, and insigni�cant. Hence, there is a lack of statisti-

cal support for the assertion that vehicles have become more crashworthy apart from ways

captured by the continuous measures from IIHS' moderate overlap front and side crash tests.

The results in Table 3 show that driver sorting is important. The coe�cient on the IIHS

badge indicator is negative and highly signi�cant, suggesting that consumers with safer

driving habits choose vehicles that are observably more crashworthy. But the impact is not

very large, at least relative to the impact of the crash test measurements. In Speci�cation 2,

for example, the corresponding odds ratio on the IIHS badge indicator, 0.78, suggests that

drivers of badged vehicles are about 22% less likely to die based on their driving habits alone.

We observe a similar selection of safer drivers to safer vehicles when we conduct analogous

exercises on an auxiliary dataset comprised of all accidents from select geographic areas,

including non-fatal accidents. In particular, we �nd that badged vehicles are 7% less likely

to be involved in an accident of any severity, a �nding that is consistent with the assertion

that badged vehicles are driven by more cautious drivers (see Section A.4 for details).

Next, we estimate the probability of driver death (r̂j) based on vehicle design. To remove

the impact of driver sorting and yield fatality rates attributable to vehicle design, we set

the IIHS badge indicator for every vehicle to the overall production-weighted average before

predicting death rates.29 We also remove di�erences in death rates attributable to vehicles

aging by setting all age indicator variables to zero, and we set time �xed e�ects to their

average. Then, we use the estimation results from Speci�cation 3 in Table 3 to predict driver

death rates (r̂j) attributable to vehicle design.
30

29If we instead set the IIHS badge indicator to 0, then predicted fatality rates would re�ect the average
driving habits among consumers selecting vehicles without a safety badge. Setting the IIHS badge indicator
to the production-weighted average yields predicted fatality rates for the average driver, including more
cautious drivers that select badge-winning vehicles.

30We use the speci�cation without vehicle weight because Anderson and Au�hammer (2013) and White
(2004) have shown that aggressivity (risk of harms to occupants of other vehicles) increases with the weight
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4.2 Counterfactual Ratings

In preparation for our counterfactual simulations described in Section 6.1, we rescale and

mean-shift the driver death rate predictions (r̂j) to form a univariate continuous rating

that is comparable to the binary IIHS badge rating seen by consumers in the status quo

environment. Under the existing binary �badge� rating, a value of zero corresponds to the

average crashworthiness among vehicles not awarded a badge, and value of one corresponds

to the average crashworthiness among vehicles awarded a badge. We rescale and mean-shift

the driver death rates (r̂j) to create a univariate continuous rating on the same scale. After

this rescaling, the new continuous rating has the same scale as the status quo rating. Thus,

we can simulate outcomes in counterfactual environments using the estimated demand model

by replacing the binary rating with our continuous rating and �nding the equilibrium.

Let r̄Unbadged denote the production-weighted average death rate for model year 2012

to 2018 vehicles not awarded an IIHS badge: r̄Unbadged =
∑

k/∈JTSP

∑
tDkt∑

k/∈JTSP

∑
tQkt

= 9.95 quarterly

fatalities per million vehicles. Similarly, let r̄Badged denote the production-weighted av-

erage death rate for model year 2012 to 2018 vehicles that are awarded an IIHS badge:

r̄TopSafetyP ick =
∑

k∈JTSP

∑
tDkt∑

k∈JTSP

∑
tQkt

= 7.88 quarterly fatalities per million vehicles. We transform

our driver death rate predictions (r̂j) to a continuous measure of crashworthiness according

to the following formula: R̂j =
r̂j−r̄Unbadged

r̄Top Safety Pick−r̄Unbadged . In Section A.4, we use a di�erent

dataset that contains all accidents in select geographic areas to estimate the risk of ma-

jor injury and construct an analogous continuous measure of crashworthiness. We �nd the

continuous measure based on risks of major injury is highly correlated (ρ = 0.94) with our

preferred continuous measure that re�ects risks of driver death.

The density of our continuous crashworthiness ratings (R̂j) among vehicles awarded a

badge in the status quo environment are shown in Figure 5. The interquartile range (among

badged vehicles) runs from 0.70 to 1.51. The corresponding interquartile range of predicted

fatality rates runs from 6.82 to 8.50 quarterly fatalities per million vehicles. The highest

value of the continuous safety measure is approximately 2.13, implying a predicted fatality

rate of 5.54 quarterly fatalities per million vehicles, which is about half the fatality rate of

the average non-badged vehicle. With better information on vehicle safety, many consumers

may switch to even safer vehicles, reducing fatalities. We investigate the impact on fatalities

in Section 6.

and size of the vehicle. Including weight and size in the ratings might encourage consumers to select vehicles
that reduce their fatality risk but that raise fatality rates for other drivers sharing the same road network.

16



5 A Model of Consumer Preferences

We employ a micro-founded model of demand for automobiles, as proposed in Berry et al.

(1995) and extended by Petrin (2002).31 We assume that the conditional indirect utility

individual i with demographics d derives from buying product j with characteristics ` in

period t equals:

uijt = δjt + µijt(xj`, pjt, αi, νi`, πdit, θ) + εijt = ūit(xj`, pjt) + εijt, (3)

where δjt represents the mean utility for product j in period t, εijt is an iid error term assumed

to follow the type 1 extreme value distribution, and µijt(xj`, pjt, αi, νi`, πdit, θ) represents

individual-speci�c preferences for product j given its product characteristics xj` and price

pjt. Speci�cally:

µijt(xj`, pjt, αi, νi`, πdit, θ) = αipjt +
∑

`

σlxj`νi` +
∑

d

∑

`

ψd`xj`πdit. (4)

νi` represents a standard normal draw of individual-speci�c preferences for characteristic `,

and πdit denotes the value of demographic d for individual i in period t. Individual-speci�c

price sensitivity equals:

αi =
α

yit
, (5)

where yit is consumer i's income.

The parameter set θ is comprised of σ`, ψd`, and α, which determine the extent of

heterogeneity in preferences for characteristics ` and price.32

The implied market share for product j in period t equals:

sjt(δt, x, pt, θ) =

∫
exp(δjt + µijt(xj`, pjt, αi, νi`, πdit, θ))

1 +
∑

k∈J exp(δkt + µikt(xk`, pkt, αi, νi`, πdit, θ))
f(νi`, πdit, αi)dνi`dπditdαi,

(6)

where δt and pt denote the vector of mean utilities and prices across products in period t,

and x denotes a matrix of product characteristics across products.

One can invert sjt(δt, x, pt, θ) to �nd the mean utilities (δt) that equate observed and

predicted market shares via the contraction speci�ed in Berry et al. (1995). The mean

31For an overview of current methods and norms, see Conlon and Gortmaker (2019).
32Assuming αi =

α
yi

implies that a single parameter determines both the mean and variance of price sensi-
tivities across consumers. Another approach is to ignore the income distribution and draw price sensitivities
from a normal distribution. However, this latter approach may result in some simulated consumers having
positive price sensitivities. Even a small number of drawn individuals with positive price sensitivities can
strongly impact results.
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utilities (δt) will be used to formulate some moment conditions, as described next.

5.1 Moment Condition

The moment conditions are comprised of the traditional moment conditions from random

coe�cient demand models and micro moments. First, one �nds the component ξjt of mean

utility δjt that is unexplained by a linear combination of observed product characteristics.

Speci�cally:

δjt =
∑

`

xj`β` + φjt + ηt + ξjt, (7)

where φjt are age �xed e�ects (time since vehicle j's sales commenced), ηt are month �xed

e�ects, and ξjt denotes the remaining component of mean utility that is not explained by

these other factors.

The recovered error terms (ξ) and set of instruments Z are assumed to be uncorrelated,

yielding a set of sample moments:

gD(θ) =
1

N

∑

j

∑

t

Z ′jtξjt, (8)

where N denotes the count of products in each market, summed across markets.

We supplement these moments with micro moments along the lines of Petrin (2002).

Speci�cally, we include sample micro moments equaling the di�erence between model-

predictions and empirical realizations of the covariance between demographic dit and the

product characteristic ` or purchased product j, averaging over a set of relevant periods

Tm.
33 Speci�cally, a given micro moment m equals:

gm(θ) =
1

Tm

∑

t∈Tm

vmt − Vmt, (9)

where vmt = Cov
(
dit,
∑

j∈Jt xj`sijt

)
, sijt denotes the predicted probability consumer i selects

product j in period t, and Vmt is the corresponding sample covariance from an auxiliary

data source.

Denoting the set of micro moments gM , the stacked set of moments is:

g(θ) =

[
gD

gM

]
. (10)

33Micro moments applied to periods from January 2013 through June 2016.
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The GMM objective is:

q(θ) = g(θ)′Wg(θ), (11)

where W is a weighting matrix.

5.2 Identi�cation

Intuition for identi�cation of the parameters determining the persistent variation in pref-

erences across consumers but unexplained by demographics (σl, α) follows the typical ar-

guments (Nevo, 2000). The parameters relating demographics to consumer tastes (ψd`) are

identi�ed by the added micro moments.

5.3 Instruments

Our �rst set of instruments are a modi�ed version of instruments suggested in Gandhi and

Houde (2019) and found to perform well in Conlon and Gortmaker (2019). Our modi�cation

accounts for the fact that vehicle availability is not binary. Rather, vehicles exit the market

gradually. As vehicles are replaced by new model year variants, older model years become

less attractive, have less selection on features (Copeland et al., 2011), and might not be

available at local dealerships. But smaller numbers remain available for sale. Even years

after a vehicle was introduced, one can still often �nd a new (never sold) one on a dealer's

lot if willing to travel far enough. To account for this feature of the automobile market, we

add weights to the competition provided by other vehicles. The weight wkt for other vehicle

k equals one during the �rst year that model k (nameplate and model year combination) is

available for sale, and declines linearly to zero over the subsequent year.

Speci�cally, the instruments are constructed as follows, separately for each characteristic

`. The �rst instrument type equals the weighted count of other vehicles produced by the

same �rm with a value of characteristic ` within one standard deviation of vehicle j's value(
ZSame
j`t (x) =

∑
k∈Jft\j wkt × 1(|xj` − xk`| < SD`)

)
. The second instrument type equals the

corresponding weighted count of vehicles with similar values of characteristic ` produced by

rival �rms
(
ZRival
j`t (x) =

∑
k/∈Jft wkt × 1(|xj` − xk`| < SD`)

)
. Note that exogenous product

features are �xed for a given nameplate and model year, hence variation in these instruments

over time arises from changes in the set of vehicles available for sale and their age-based

weights (wkt). We preprocess this instrument set by �rst transforming the instruments

using principal components, and then by keeping the smallest set of principal components

accounting for 95% of the variance.

We augment the aforementioned set of instruments for markups with an instrument for
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cost based on exchange rates. Manufacturers are required by the American Automobile

Labeling Act to report the contribution of components from country h to the �nal value of

nameplate j, for any other country accounting for at least one third of the vehicle's value.34

Using these data, we construct the weighted average fraction change in the exchanges rates

with the United States since January 2013, weighted by the percent of the vehicle's compo-

nents originating in the corresponding country: ZExchange
jt =

∑
h

Ψjh

1−Ψj0
× e−rateht

e−ratehJan 2013
, where

Ψjh denotes the fraction of vehicle j's components originating from foreign country h, Ψj0

denotes the share of components of unreported origin, and e− rateht is the exchange rate of
country h's currency with U.S. dollars in period t.

The full set of instruments includes a constant, a product's exogenous characteristics

xj`, the modi�ed version of the local instruments from Gandhi and Houde (2019), and the

exchange rate instrument:

Zjt =
(

1, xj`, Z
Same
j`t (x), ZRival

j`t (x), ZExchange
jt

)
. (12)

6 Results and Counterfactuals

The estimated model coe�cients shown in Table 4 are intuitive. The mean coe�cient on

the IIHS badge indicator is positive and signi�cant at the 1% level. Note that although

consumers can search for more detailed safety information than a badge indicator by com-

bining ratings from multiple crash test types (each on a four-point scale), we �nd evidence

that they focus only on the univariate rating, which is a discrete badge. See Section A.1 for

details. The mean coe�cients on size (W×L), miles per dollar, and indicator for recently re-
designed models are also positive. The negative coe�cient on horsepower divided by weight

is small relative to the corresponding random coe�cient, implying that a sizable share of

consumers have a strong preference for vehicles with powerful acceleration.35 The term on

price is strongly signi�cant, and the estimated mean monthly elasticity of demand is -2.57.

Note that product age �xed e�ects for each combination of nameplate and model year are

important controls to account for diminishing demand as vehicles age and the impacts of

available variety (Copeland et al., 2011).

The estimated model also captures heterogeneity in preferences. Considering both ran-

dom parameters and demographics-based preferences, we �nd heterogeneous price sensitiv-

ities and heterogeneous preferences for several product features, including crashworthiness,

size, horsepower over weight, minivan indicator, and the constant. Note that heterogeneity

across consumers in the constant indicates heterogeneous tastes for the inside good: new

34The data are available at: https://www.nhtsa.gov/part-583-american-automobile-labeling-act-reports.
35We con�rm that better acceleration is generally preferred. In a representative agent model, the coe�cient

on horsepower divided by weight is signi�cant when adequate controls are included. See Appendix Section
A.1.
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vehicles.

6.1 Counterfactuals

We begin by exploring the impact of a counterfactual ratings format�a univariate contin-

uous rating that provides much �ner information to consumers�on vehicular fatalities and

welfare, holding vehicle designs �xed. Recall that we create the continuous rating by rescal-

ing predicted driver fatality rates so that they are consistent with the binary safety ratings

observed by consumers in practice and used in demand estimation. After the rescaling,

a value of zero corresponds to the average driver fatality rate for unbadged vehicles (9.95

quarterly fatalities per million vehicles), and a value of 1 corresponds to the average fatality

rate among vehicles awarded a safety badge (7.88 quarterly fatalities per million vehicles).

See Section 4.2 for details.

To evaluate the impact of reporting precise information to consumers, we simulate pur-

chase shares and welfare when the IIHS badge is replaced with a continuous rating. We

consider both the cases where (i) prices remain �xed at levels observed in the data, and

(ii) new equilibrium prices are simulated given the estimated demand system and marginal

costs implied by the static multi-product �rm Nash in prices equilibrium assumption.

Perhaps of greatest interest to policy makers is the impact of rating format choice on

fatalities. We �rst simulate the log change in sales for each vehicle (nameplate and model

year combination) when continuous ratings are introduced. We then plot these changes

against the continuous safety rating, separately for vehicles that had received an IIHS badge

and vehicles which had not (see Figure 6). Note that vehicles previously awarded an IIHS

badge and revealed to be unsafe see substantial reductions in sales, as much as 50%.36

Vehicles that were not awarded a badge but were revealed to be safer when continuous

ratings are reported experience as much as a 50% increase in sales.

Next, we simulate changes in the aggregate driver fatality rate that results when con-

sumers are presented with precise ratings and some consumers switch to safer vehicles.

Speci�cally, we simulate the sales-weighted average fatality rate across vehicles under each

ratings format, then compare. We �nd that a continuous rating would reduce the death rate

by about 7.4% if all product features�including price�are held constant (see Table 5). For

context, note that about 25,000 vehicle occupants die in crashes in the United States every

year.37 Hence, a simple back-of-the-envelope calculation suggests that reporting a continu-

ous measure of crashworthiness would save about 0.074 × 25, 000 = 1, 850 lives per year.38

36The change in sales is primarily along the intensive margin; total vehicle sales increase by only 2.03%
in the counterfactual.

37https://www-fars.nhtsa.dot.gov/Main/index.aspx
38The immediate impact would not be as large. The full impact would not be realized until the existing

stock of vehicles (initially purchased by consumers with access only to discrete ratings) is replaced with
newer vehicles purchased when continuous ratings were available.
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At the value of a statistical life used by the department of transportation, $9.4 million in

2016, this would imply a dollar bene�t of about $17.4 billion per year, despite ignoring the

bene�ts from reducing the number and severity of injuries, which occur nearly 100 times as

frequently.39

The simulated impact on fatalities is reduced somewhat if using simulated new equilib-

rium prices, rather than status quo prices. The fatality rate falls by 5.2% when discrete

ratings are replaced by a continuous rating and prices adjust.40 The smaller bene�t when

prices adjust arises because vehicles revealed to be substantially less safe than believed under

the IIHS badge system lower their prices by about 10%, and vehicles revealed to be safer

raise prices, although by a lesser amount. Speci�c price changes are reported in Appendix

Figure A3. Note, however, that in the long run, unsafe vehicles sold at low markups may

be discontinued, which may lead to a larger than 5.2% improvement in the fatality rate.

Note that a portion of the bene�ts of the counterfactual continuous ratings arise be-

cause the existing discrete ratings, which are constructed from a series of thresholds, can be

misleading. For example a vehicle that performs exceptionally well on a number of safety

dimensions but bad on just a few may not be awarded a badge, whereas another vehicle that

just surpasses each of the thresholds would be awarded a badge even if it is less safe overall.

Thus, existing ratings are not necessarily an ordinal representation of vehicle crashworthi-

ness. We consider a counterfactual binary discrete rating that is based on our continuous

ratings, which awards badges to the same proportion of vehicles as in the status quo envi-

ronment (33.2%). Speci�cally, we �nd the continuous rating threshold for which 33.2% of

vehicles yield higher continuous ratings, and assign all vehicles exceeding the threshold a

safety rating equaling one. All other vehicles are awarded a safety rating of zero. We �nd

these alternative discrete ratings would yield meaningful improvements, reducing fatalities

by 3.8% (see Table 5). The bene�ts of an alternate discrete ratings suggests that the existing

ratings were not primarily designed for their informational content, raising questions about

whether the discrete rating format was chosen deliberately or whether they followed the lead

of other ratings agencies in other domains. Publicly releasing the underlying data allows for

competition in ratings design and format choice.

Next, we investigate the impact on consumer surplus. Some care is required. The

typical multinomial logit surplus change calculation implies a comparison between ex-ante

expected utility in the status quo environment where the safety characteristic is discrete

with the analogous calculation where the safety characteristic is continuous. However, this

is misleading because the precision of information available to consumers ex-ante di�ers

between the two scenarios. Note that vehicle characteristics have not changed; only the

39See https://www.transportation.gov/resources/2015-revised-value-of-a-statistical-life-guidance
and https://one.nhtsa.gov/nhtsa/whatis/planning/2020Report/2020report.html

40The simulated pricing equilibrium is found using the contraction proposed in Morrow and Skerlos (2011)
and suggested in Conlon and Gortmaker (2019).
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information about safety has. More precise ratings inform some consumers that their choice

is not as crashworthy as they believed. If they still elect to purchase the same vehicle as they

did in the status quo scenario, then the standard surplus calculation implies that welfare

is reduced even though they are still choosing the same vehicle (at the same price), simply

because they become aware of the vehicle's shortcomings. A similar problem arises for

consumers who select the same vehicle in both scenarios but learn from continuous ratings

that the vehicle is safer than formerly believed. In these examples, realized consumer surplus

has not changed, but the standard surplus change calculation would imply that it had.

In estimating consumer surplus changes, we follow the experience goods literature. This

literature di�erentiates between expected welfare before purchasing a product, and realized

welfare after the product is consumed and true quality is observed. Thus, we can adjust the

status quo welfare calculation that corresponds to ex-ante perceived welfare before purchase

by subtracting changes in welfare from learning true quality after purchase.41 Adapting the

method in Reimers and Waldfogel (2019) and Train (2015), the realized consumer surplus

of consumer i in period t under a speci�c coarse ratings equals:

CSCoarseit =
ln
(

1 +
∑

j exp(ūit(x
Coarse
j` , pCoarsejt ))

)

|αi|

+

∑
j s

Coarse
ijt

(
ūit(x

Cont
j` , pCoarsejt )− ūit(xCoarsej` , pCoarsejt )

)

|αi|
, (13)

where ūit(xj`, pjt) denotes consumer i's utility for product j in period t, excluding the id-

iosyncratic error term, from Equation 3, and sCoarseijt =
exp(ūit(x

Coarse
j` ,pCoarse

jt ))

1+
∑

k∈J exp(ūit(xCoarse
k` ,pCoarse

kt ))
denotes

the probability consumer i selects product j in period t under coarse ratings. xCont de-

notes product characteristics under continuous safety ratings, which di�ers from the prod-

uct characteristics under coarse ratings
(
xCoarse

)
only in the reported value of the safety

characteristic. pCoarse denotes prices under the coarse ratings. Note that the component∑
j s

Coarse
ijt (ūit(xCont

j` ,pCoarse
jt )−ūit(xCoarse

j` ,pCoarse
jt ))

|αi| , which is not typically included in welfare calcula-

tions, accounts for changes due to learning a product's true quality after purchase. Aggregate

welfare changes are calculated by integrating over the consumer types, multiplying by the

market size M , and summing across periods.

The adjustment is not needed for welfare calculations in the counterfactual with more

precise information; it is assumed that safety quality is observed before purchase, and there-

fore no new information is gleaned after purchase. The consumer surplus calculation in

counterfactual environments (with precise safety information) thus follows the standard for-

41We acknowledge that, unlike for other experience goods or other vehicle characteristics, consumers may
not fully learn how safe a vehicle is even after purchasing and driving it.
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mula:

CSContit =
ln
(

1 +
∑

j exp(ūit(x
Cont
j` , pContjt ))

)

|αi|
, (14)

where pCont denotes prices in the counterfactual environment with precise safety information.

We �nd that more precise crashworthiness ratings raise consumer surplus by 7.7 billion

dollars when prices remain the same in the counterfactual analyses, and 6.8 billion dollars

when new equilibrium prices are simulated in the counterfactual scenario. Presumably, the

costs of switching from a discrete to a univariate continuous rating are much less.42

The bene�ts of switching to a continuous rating may be muted if �rms have a stronger

incentive to improve safety under a discrete rating format. Although it is challenging to sim-

ulate counterfactual manufacturer investments in safety improvements for several reasons�

multiple equilibria are likely, �xed costs of improving safety for vehicles sold globally cannot

be inferred from U.S. market data alone, costs may change over time�we can explore

whether alternative incentives can plausibly o�set the gains from providing consumers with

�ner crashworthiness information. To that end, we (i) investigate the extent of safety reduc-

tions necessary to o�set the bene�ts found above; (ii) explore the extent of heterogeneity in

�rm incentives to improve safety, which has been shown to reduce the gains from coarsening

ratings (Dubey and Geanakoplos, 2010); and (iii) explore the uncertainty surrounding the

optimal safety level threshold to obtain a safety badge.

To investigate the extent of manufacturer response needed to o�set gains from improved

information, we consider a special case where all vehicles formerly awarded a badge reduced

their safety provision after switching from the status quo discrete rating to a continuous

rating. Speci�cally, we assume that all IIHS-badged vehicles would reduce their death rate

improvement over the average unbadged vehicle by x%, and we search for the value of x

that would imply the same death rate results under a continuous rating. We �nd that IIHS-

badged vehicles would need to reduce their safety advantage over the average non-badged

vehicle by 23.6% to eliminate the mortality bene�t arising from providing consumers with

more precise safety information. Such a reaction seems large�possibly implausibly large�

just from a change to the format in which ratings are presented. Furthermore, assuming all

�rms would reduce safety investments is presumably unrealistic. The stronger incentive of

a discrete ratings' format applies only to vehicles whose safety investments would otherwise

fall just below the threshold for a higher discrete score. For other vehicles, a discrete rating

reduces the incentive to provide safety.

Heterogeneity across vehicles in the variable pro�t gained from being recognized as safe

casts further doubts on the possibility that a discrete rating format could further incentivize

safety provision. To formally investigate the extent of heterogeneity, we use our model to

42Long run changes in consumer surpluses may change if manufacturers respond to alternate ratings by
redesigning vehicles recognized as safe to include other features typically valued by consumers that care
about safety.
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simulate the derivative of variable pro�ts from the �rst 24 months of sales with respect

of the level of safety reported. Speci�cally,
∂πj

∂xIIHS Badge
=
∑τ+24

t=τ (pjt − cjt)M
∂sjt(δt,x,pt,θ)

∂xIIHS Badge
,

where τ denotes the �rst period vehicle j is available for sale, M denotes the market size,

and marginal costs cjt are inferred from the multi-product �rm Nash in prices equilibrium

assumption.

Note the substantial variation across vehicles in the simulated impact of improving safety

on variable pro�ts that is apparent in Figure 7. The interquartile range ($17 million to $128

million) is quite large relative to the median ($48 million). Figure 7b shows a similar extent of

heterogeneity among the subset of vehicles awarded an IIHS badge. Although manufacturers

may elect to improve safety of some vehicles under a discrete rating, other vehicles pro�t

less from safety recognition. A strict threshold results in some vehicles pooling with less safe

vehicles, thus reducing investments in safety features. Other highly crashworthy vehicles far

exceeding the threshold may reduce investments in safety provision that are not conveyed

by discrete ratings and therefore go unobserved by consumers. Dubey and Geanakoplos

(2010) noted that using multiple discrete ratings may somewhat alleviate this problem, but

incentives to avoid pooling with less safe vehicles are less strong when there are multiple

discrete rating levels.

Finally, we investigate whether uncertainty regarding the optimal threshold for a better

discrete rating might undermine theoretical bene�ts. If the threshold is accidentally too

lenient, then �rms invest a small amount, just enough to pass the threshold, because any

additional investments would not be observed by consumers and thus would not increase the

perceived quality of their vehicles. As a result, investments in safety are reduced compared

with a continuous rating. If the threshold is accidentally too strict, then �rms might forgo

attempting to surpass the threshold, again leading to lower investments in safety. The

bene�ts of a discrete rating rely on properly choosing the threshold for a better discrete

score.

There are two main sources of uncertainty in �rms' responses. First, the rating organiza-

tion does not know the exact size of the variable �xed cost investment required for a vehicle

to surpass a given threshold and be recognized as safe. Second, the rating organization is

uncertain of the variable pro�t gains manufacturers receive from being recognized as safe.

Our model estimates allow us to investigate the latter: the uncertainty in variable pro�t

gains.

We investigate the impact of uncertainty as follows. Suppose the rating organization

knows the cost of increasing safety by any speci�c amount, but does not know the gains

manufacturers receive from being recognized with a safety badge. Suppose further that

the organization intends to design ratings so that vehicles whose variable pro�t gained is

above the median will invest enough to surpass the threshold and be recognized with a

safety badge. The ratings agency's goal is thus to predict the median pro�t gain and to
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choose a level of safety improvement that costs slightly less than the median pro�t gain.

Success relies on their ability to precisely predict the median pro�t gain. We examine the

extent of uncertainty in the median gain using the parametric bootstrapping procedure, thus

assuming that our model uncertainty re�ects the rating organization's perceived uncertainty.

Speci�cally, we draw from the implied distribution of parameters. For each draw, we �rst

calculate marginal costs implying a Nash equilibrium in prices, accounting for �rm ownership

Berry et al. (1995). We then calculate the derivative of pro�ts with respect to the safety

badge for each vehicle.

We �nd that estimated median gains to improving safety are imprecise. The interquartile

range spans from $41.9 million to $56.7 million. The di�erence, $14.8 million, is quite large

relative to the median of about $48. Thus, �nding the optimal strictness of a discrete rating

requires some good fortune.

Together, these mitigating factors suggest coarsening ratings may not yield substantial

increases in safety investments, and may do the opposite�reduce investments in safety

enhancements. Consistent with this possibility, Hunter (2020) �nds that coarsened ratings

reducing supplier e�ort in a di�erent context. If coarsening ratings does reduce incentives

for safety provision, then switching to univariate continuous crashworthiness ratings may

reduce fatalities by more than 1,850.

7 Conclusion

In this paper, we investigated whether switching from the status quo discrete crashworthiness

ratings to a continuous rating format would reduce fatalities and raise welfare. Our results

suggest that this switch would reduce annual fatalities by 1,850 in the long run in the United

States. At the current value of a statistical life used by the department of transportation,

this implies that U.S. agencies should be willing to spend up to $17.4 billion per year to

make precise ratings available. We also �nd that precise ratings would raise consumer

welfare by about $7 billion over the �ve observed years. The gains are particularly large

given that the costs of providing a continuous rating are presumably small. At a minimum,

our results suggest that continuous ratings should be o�ered as an option alongside coarse

ratings (currently they are not). However, the �ndings in Farrell et al. (2010) and Houde

(2018) suggest that coarse ratings may crowd out useful information from continuous ratings,

suggesting that continuous ratings should be prominently featured.

Existing theoretical work suggests that certain vehicles might have a stronger incentive to

increase safety when ratings are discrete, speci�cally vehicles whose safety investments under

a continuous ratings would be slightly below the investments needed to earn a better safety

score when ratings are discrete. However, we �nd the requisite impact of the ratings format

to be large. If all vehicles awarded a discrete safety badge reduced their safety bene�t
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over the average unbadged vehicle by 10% after switching to a continuous rating, large

mortality bene�ts remain. Only if all vehicles awarded a badge reduce safety bene�ts by

23% would the gains from precise information be undone. Furthermore, we �nd substantial

heterogeneity across vehicles in the pro�t they gain from being recognized as safe. Thus,

the optimal threshold di�ers substantially across vehicles. Using multiple discrete rating

levels may not help, as Dubey and Geanakoplos (2010) show that incentives generated from

a discrete rating decrease in the number of discrete rating levels. Finally, given substantial

uncertainties as to how manufacturers will respond, the best threshold choice with available

information might be far from the best threshold with perfect information, and poorly set

thresholds can lead to reduced incentives to provide safety compared to continuous ratings.

We conclude that continuous ratings would likely improve welfare, suggesting that poli-

cies that enable them are preferable. Organizations can either develop such ratings them-

selves or allow public use of the raw data needed to develop them, as the U.S. government

has with its open data website.43 On the website, researchers are speci�cally encouraged

to �conduct research, develop web and mobile applications, design data visualizations, and

more.� Opening the data to the public may be preferable to developing ratings in-house,

because it allows for novel modeling innovations and other uses of the underlying data, and

increases competition in the choice of how to process and present information.

Finally, our paper's implications extend beyond vehicle safety. Ratings for experience

goods are abundant, and often ratings are discrete. Examples abound, from product ratings

in online commerce to credit ratings (e.g., Moody's). Substantial bene�ts may arise from

switching these ratings to a continuous format.
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Figure 1: Top Safety Picks List

Notes: Figure shows the list of 2017 �Top Safety Picks.� See: https://www.iihs.org/
ratings/top-safety-picks/2017#award-winners. Accessed Dec 5, 2019.
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Figure 2: IIHS Thresholds for B-Pillar Vehicle Structure Discrete Sub-sub-ratingStructural rating

Seat centerline

≥ 12.5 cm

Good: B-pillar point of maximum intrusion is
12.5 cm or more from seat centerline

0 – 4.9 cm

5.0 – 12.4 cm

Note: The B-pillar intrusion in centimeters is translated into a discrete score based
on how far the B-pillar is from the driver's seat center line following the staged
crash. The driver's seat is shown from overhead in the picture. This picture was
adapted from an illustration in �IIHS Side Impact Test Program � Rating Guide-
lines.� https://www.iihs.org/media/2104caa9-7f7e-41fa-a4a5-af65f1cab89e/

l9AWAw/Ratings/Protocols/current/side_impact_guide.pdf

Figure 3: Evolution of Discrete Subratings
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Notes: The �gure shows average discrete ratings for each type of IIHS crash test for
each model year between 2005 and 2018, where each is rated on a scale from 1 (�poor�)
to 4 (�good�). Each rating is shown from the latter of 2005 or its inception.
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Figure 4: Evidence of Clumping at Thresholds

0
.0

5
.1

.1
5

D
e
n
s
it
y

−30 −20 −10 0 10
Cabin collapse (cm)

B−Pillar

0
.1

.2
.3

.4
.5

D
e
n
s
it
y

0 2 4 6 8 10
Force (kN)

Combined Pelvic Force

0
.0

2
.0

4
.0

6
.0

8
D

e
n
s
it
y

0 20 40 60
Deflection (mm)

Rib Deflection (Avg.)

0
.5

1
1
.5

2
D

e
n
s
it
y

0 .5 1 1.5 2 2.5
Viscous Criterion (m/s)

Viscous Criterion

2005 2015

Notes: The �gure shows histograms of the four discrete side impact crash test submeasures
that had the lowest average discrete score on a scale from 1 (�poor�) to 4 (�good�). The discrete
thresholds are depicted by vertical lines. The left-most threshold denotes the cuto� between a
�good� and an �acceptable� discrete sub-sub-rating. The middle threshold denotes the cuto�
between an �acceptable� and �marginal� discrete sub-sub-rating. The right-most threshold
denotes the cuto� between a �marginal� and �poor� discrete sub-sub-rating

Figure 5: Distribution of Continuous Ratings Among Vehicles Earning a Safety Badge
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Notes: The �gure shows the density of counterfactual continuous crashworthiness ratings for
vehicles earning an IIHS badge. The scale on the horizontal axis corresponds to the binary
IIHS badge indicator variable. A value of 0 on the horizontal axis corresponds to the average
driver fatality rate for vehicles not awarded a badge, which is 9.95 fatalities per million vehicles
each quarter. A value of 1 on the horizontal axis corresponds to the average driver fatality rate
for vehicles that are awarded a safety badge, which is 7.88 fatalities per million vehicles each
quarter. Note that higher values along the horizontal axis correspond to lower driver fatality
rates.
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Figure 6: Change in Sales
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(b) Simulated New Equilibrium Prices

Notes: The sub�gures show the log change in sales arising when a continuous safety

rating is reported to consumers against the counterfactual continuous rating. Each

point denotes a particular vehicle (nameplate and model year combination).

Figure 7: Impact of Safety Improvements on Pro�ts: Distribution Across Vehicles
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(b) Vehicles Awarded Safety Badge

Notes: The �gure shows the density of the derivative of pro�ts with respect to the level

of safety reported. Pro�ts include all pro�ts during the �rst 24 months a given vehicle

(nameplate and model year) are sold. Model years 2012, 2013, 2017, and 2018, which

are observed for less than 24 months, are excluded.
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Table 1: Summary Statistics: Vehicle Sales and Characteristics

Model Number Sales1 1(IIHS Size2 1(Major Real
Year Models Badge) (W × L) MPD3 HP/WT4 Redesign) Price6

2012 201 Avg 0.440 0.471 1.369 3.094 0.619 0.627 1.567
SD 1.547 0.177 1.740 0.163 0.905

2013 241 Avg 3.039 0.537 1.365 3.025 0.641 0.363 1.592
SD 6.185 0.170 1.239 0.198 0.923

2014 253 Avg 2.859 0.227 1.369 3.426 0.655 0.346 1.665
SD 5.820 0.167 1.932 0.209 0.972

2015 258 Avg 3.050 0.290 1.367 4.217 0.667 0.299 1.673
SD 6.043 0.163 2.090 0.213 0.948

2016 260 Avg 3.023 0.288 1.370 4.860 0.662 0.322 1.643
SD 6.105 0.167 2.356 0.213 0.907

2017 267 Avg 3.538 0.379 1.374 4.535 0.664 0.346 1.646
SD 6.696 0.166 2.155 0.219 0.909

2018 247 Avg 1.859 0.274 1.389 4.069 0.674 0.388 1.698
SD 4.047 0.148 1.164 0.195 0.909

1 Sales is quantity per month reported in thousands.
2 Size is the product of vehicle length and width dimensions, measured in 100s of inches.
3 MPD is miles per dollar, adjusted for in�ation and reported in 1983 dollars.
4 HP/WT is horsepower per 10 lbs of weight.
5 1(Major Redesign) is a binary variable indicating whether the model year is the �rst since a major
redesign.

6 Price is the manufacturers suggested retail price (MSRP) less any consumer incentives and rebates
for elective vehicles, plus the gas guzzlers tax, where applicable. Price is adjusted for in�ation and
reported in tens of thousands of 1983 dollars.
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Table 2: Summary Statistics: Crash Test Measurements

Moderate Overlap Frontal Crash Test Side Crash Test
Structure Head Inj. Neck Chest Leg Chest Leg

Model Foot A- HIC- Peak Exten- Max Tibial Rib De�. Force L-M
Year Intr. Pillar 15 Gs sion Nij Force De�. Rate kN Mom.

2005 Avg 14.4 2.9 299.1 36.7 24.5 0.3 0.7 38.5 6.3 0.6 116.1
SD 6.7 3.6 136.1 40.3 13.5 0.1 0.3 9.6 1.9 0.4 66.6

2006 Avg 12.8 2.0 295.3 35.6 22.6 0.3 0.7 36.1 5.7 0.6 113.8
SD 5.2 2.1 124.0 39.5 10.8 0.1 0.3 9.7 2.0 0.4 65.4

2007 Avg 11.6 1.8 290.4 34.1 21.7 0.3 0.7 33.6 4.9 0.6 105.7
SD 4.8 2.0 127.1 37.7 10.9 0.1 0.3 9.5 1.9 0.4 52.8

2008 Avg 11.2 1.7 276.4 28.9 20.6 0.3 0.7 33.1 4.8 0.6 105.2
SD 4.6 1.9 113.4 34.2 10.4 0.1 0.3 9.2 1.8 0.3 51.4

2009 Avg 10.8 1.6 267.2 26.9 20.3 0.3 0.6 31.8 4.5 0.6 109.0
SD 4.4 1.8 110.1 31.4 10.5 0.1 0.2 8.3 1.7 0.3 49.0

2010 Avg 10.2 1.3 260.7 24.8 19.4 0.3 0.6 31.4 4.3 0.6 112.4
SD 4.2 1.5 111.9 31.6 10.4 0.1 0.2 7.9 1.6 0.4 51.3

2011 Avg 9.7 1.1 251.6 21.2 18.8 0.3 0.6 30.5 4.0 0.6 112.6
SD 4.3 1.3 108.5 31.3 10.7 0.1 0.2 7.9 1.4 0.4 56.2

2012 Avg 9.3 1.0 252.7 20.0 19.0 0.3 0.6 29.5 3.9 0.6 112.7
SD 4.1 1.0 109.5 29.7 10.9 0.1 0.2 7.3 1.4 0.4 60.1

2013 Avg 8.6 1.0 244.1 17.4 18.5 0.3 0.5 28.6 3.8 0.7 110.5
SD 4.0 1.0 108.6 28.8 9.7 0.1 0.2 6.6 1.2 0.4 60.6

2014 Avg 8.2 0.8 237.4 15.7 18.0 0.3 0.5 28.7 3.8 0.7 102.8
SD 4.0 0.9 104.8 26.8 9.6 0.1 0.2 6.4 1.2 0.4 58.8

2015 Avg 7.5 0.6 232.4 12.6 17.0 0.3 0.5 28.6 3.9 0.7 101.0
SD 3.8 0.8 97.8 24.6 9.1 0.1 0.2 6.1 1.2 0.4 59.3

2016 Avg 7.1 0.6 224.4 8.5 16.9 0.3 0.5 28.9 3.9 0.7 100.1
SD 3.8 0.8 85.3 19.9 9.2 0.1 0.2 5.8 1.2 0.3 61.8

2017 Avg 6.6 0.5 214.0 7.6 16.2 0.3 0.5 28.9 4.0 0.7 96.4
SD 4 0.8 83.0 18.6 8.5 0.1 0.2 5.7 1.2 0.3 58.6

2018 Avg 6.4 0.5 210.9 6.5 17.1 0.3 0.5 28.3 3.9 0.7 90.0
SD 3.6 0.7 76.7 15.9 8.3 0.1 0.1 5.1 1.2 0.3 52.5

Notes: Larger numbers denote increased injury risk and greater cabin intrusion. HIC

(head injury criterion) = maxt1,t2

[
1

t2−t1

∫ t2
t1
a(t)dt

]2.5
(t2 − t1), where t1 and t2 de-

note the initial and �nal time (not to exceed 15 milliseconds), and a is acceleration.
Gs denotes g-force. Neck extension: torque in Newton Meters (Nm). Nij is a lin-
ear combination of axial loads and bending moments (see https://www.nhtsa.gov/

sites/nhtsa.dot.gov/files/rev_criteria.pdf). Tibial axial force is measured in
kilonewtons (kN). Chest de�ection measures rib bone displacement, averaged across
ribs. Sternum de�ection denotes the rate of displacement. Femur force is measured in
kilonewtons (kN). The L-M moment is measured in Newton meters (Nm).
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Table 3: Relating Fatal Accident Rates to Crash-Test Measurements

(1) (2) (3) (4) (5)
Year Redesigned -0.0188 0.0244* 0.0157 0.0161

(0.0141) (0.0130) (0.0119) (0.0100)
I(Awarded Safety Badge) -0.2500*** -0.2613*** -0.1331**

(0.0577) (0.0552) (0.0564)

Side Crash Test Continuous Measures

B-pillar to Driver Seat Centerline (cm) 0.0116*** 0.0013 0.0102**
(0.0036) (0.0031) (0.0041)

Neck Tension Force (kN) -0.0192 0.1426*** 0.0695
(0.0384) (0.0400) (0.0372)

Shoulder Lateral De�ection (mm) 0.0094*** 0.0031 0.0036*
(0.0023) (0.0022) (0.0021)

Sternum Max De�. Rate (ms) 0.0382*** 0.0442*** 0.0303***
(0.0106) (0.0097) (0.0095)

Femur L-M Moment (Nm) 0.0021*** 0.0013*** 0.0009***
(0.0003) (0.0003) (0.0003)

Femur A-P Moment (Nm) 0.0014** 0.0004 0.0004
(0.0006) (0.0004) (0.0003)

Moderate Overlap Crash Test Continuous Measures

A-pillar Rear Movement (cm) 0.0369** 0.0212* 0.0112
(0.0168) (0.0127) (0.0114)

Head HIC-15 0.0001 0.0004** 0.0004**
(0.0002) (0.0002) (0.0002)

Head Peak Gs 0.0009* 0.0005 -0.0002
(0.0005) (0.0005) (0.0004)

Footwell Intr. at Footrest (cm) 0.0061 0.0161** -0.0046
(0.0074) (0.0064) (0.0067)

Footwell Intr. at Left (cm) 0.0137** -0.0012 0.0097*
(0.0060) (0.0061) (0.0056)

Footwell Intr. at Right (cm) -0.0200*** -0.0039 0.0024
(0.0071) (0.0061) (0.0056)

Left Femur Axial Force (kN) -0.0320** -0.0114 0.0031
(0.0153) (0.0123) (0.0118)

Right Femur Axial Force (kN) -0.0033 -0.0183 -0.0098
(0.0146) (0.0118) (0.0111)

Right Tibia Axial Force (kN) 0.3150*** 0.1965*** 0.1394**
(0.0799) (0.0747) (0.0687)

Right Foot Acceleration (g) -0.0007 0.0006 0.0005
(0.0006) (0.0005) (0.0004)

Vehicle Age FE Y Y Y Y Y

Time FE Y Y Y Y Y

Vehicle Dimensions Y Y
Vehicle Type, Bodystyle, Weight Y
Nameplate/Design Generation FE Y

N (in millions) 2,846 2,846 2,846 2,846 2,831
Pseudo R2 0.0021 0.0062 0.0079 0.0095 0.0129

Notes: Reported parameters maximize the likelihood of observed driver death rates in a binary logit model.
Standard errors (in parentheses) are clustered by nameplate and model-year. N = the sum of (cumulative
production × quarters of exposure) across vehicle nameplates. Speci�cation 5 excludes vehicles with zero
deaths. Restricting speci�cations 1 to 4 to the same sample has negligible impacts on results.
* p<0.1, ** p<0.05, *** p<0.01
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Table 4: Estimated Parameters: Random Coe�cient Demand Model

Parameter
Variable Est. (Std. Err.)

Term on Price (α)

1/yi -4.97 (0.65)***

Demographic-Based Taste Parameters (ψd`)

Education×1(IIHS Badge) 0.21 (0.01)***

1(Rural)×1(IIHS Badge) -0.26 (0.01)***

1(Rural)×Size (W×L) 2.76 (0.07)***

Has Child×Size (W×L) 1.51 (0.07)***

Has Child×1(Minivan) 2.36 (0.11)***

Standard Deviations (σ`)

Constant 10.30 (1.07)***

HP/WT 1.57 (0.54)***

Mean Coe�cients (β`)

1(IIHS Badge) 0.26 (0.07)***

Size (W×L) 0.33 (0.45)

MPD 3.57 (2.24)

HP/WT -0.48 (0.58)

1(Recently Redesigned) 0.07 (0.06)

Vehicle Age FE Y

Vehicle Type FE Y

Month FE Y

Notes: MPD denotes miles per dollar, and HP/WT denotes horsepower divided by weight.
Vehicle age denotes the number of months since sales of the vehicle (nameplate, model-year)
commenced. Vehicle type indicates style (e.g., SUV, sedan), and an indicator for being classi-
�ed as a luxury or executive vehicle. The model was estimated using two-step GMM. Standard
errors are clustered by nameplate and model year combinations.
* p<0.1, ** p<0.05, *** p<0.01
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Table 5: Simulated Impacts of a Alternate Rating Formats

Continuous Ratings CF Discrete

Status Quo Prices Simulated New Equilibrium Prices

%∆ in -7.399% -5.207% -3.786%

Driver Deaths [-10.110, -4.787] [-8.050, -2.535] [-5.919, -1.795]

∆ in $7.669 $6.819 $5.818

Consumer [4.281, 14.611] [3.867, 13.178] [3.315, 11.096]

Surplus

(in Billions)

Notes: Reported changes are relative to the status quo discrete rating. The death rate
is de�ned as the death rate per vehicle (deaths/total purchases). The 95% con�dence
interval is computed via parametric bootstrapping and is shown in brackets.
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A Online Appendix

A.1 Representative Agent Model

In this section, we investigate which vehicle features and reported safety information compo-

nents impact consumer choices using a representative agent logit model. We use the Berry

(1994) linearization, and we instrument for price using the modi�ed Gandhi and Houde

(2019) instruments detailed in Section 5.3 (See Appendix Table A1). Most parameter es-

timates are intuitively sensible. The coe�cient on IIHS badge is positive and signi�cant,

con�rming that on average consumers have a preference for safer vehicles. Most other pa-

rameters have their anticipated sign or are insigni�cant.

The IIHS prominently features �Top Safety Pick� badges, suggesting that this may be the

most conspicuous rating to consumers. But there are �ner ratings available on the IIHS's

website. Speci�cally, on some of its site's subpages, the IIHS reports a separate rating for

each crash test type (moderate overlap front, small overlap front, side, and roof strength) on

a four-point scale (poor [1]; marginal [2]; acceptable [3]; good [4]). To investigate whether

consumers use information from these speci�c tests when making vehicle purchase decisions,

we include the average rating across the speci�c crash tests as an additional explanatory

variable in the last column of Appendix Table A1. Note that the coe�cient on this variable is

small and statically insigni�cant, whereas the coe�cient on the �Top Safety Pick� indicator

remains large and highly signi�cant, con�rming that consumers focus predominantly on

the �Top Safety Pick� badges that are prominently shown on the IIHS's website (see, for

example, Figure 1).
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Table A1: Estimated Parameters: Representative Agent Demand Model

Dependent Variable is log(sjt)− log(s0t)

(i) (ii) (iii) (iv) (v)

1(IIHS Badge) 0.448*** 0.448*** 0.450*** 0.319*** 0.305***
(0.107) (0.106) (0.106) (0.0696) (0.0722)

1(Major Redesign) 0.163*** 0.141** 0.140** 0.132** 0.132**
(0.059) (0.056) (0.055) (0.051) (0.051)

Price (α) -1.122*** -1.031*** -1.024*** -2.880* -2.904*
(0.181) (0.186) (0.185) (1.543) (1.550)

Size (W × L) 2.973*** 2.546*** 2.553*** 4.302** 4.293**
(0.392) (0.481) (0.481) (2.107) (2.111)

MPD -2.337 0.777 1.848 -7.651*** -7.492***
(3.733) (3.568) (3.885) (2.554) (2.641)

HP/WT -0.232 -0.294 -0.297 1.902** 1.910**
(0.575) (0.585) (0.584) (0.822) (0.824)

1(4WL or AWL) -0.186 -0.281* -0.284* -0.202 -0.202
(0.164) (0.159) (0.159) (0.278) (0.279)

Avg. of Speci�c Tests 0.0460
(Scale from 1 to 4) (0.0604)

Model Year FE Y Y Y Y Y

Vehicle Age FE Y Y Y Y Y

Engine Type FE Y Y Y Y Y

Vehicle Type FE Y Y

Month FE Y Y Y

Nameplate FE Y Y

Notes: Table A1 shows estimation results under various speci�cations of a representative agent
logit model. Estimates were obtained by regressing log(sjt) − log(s0t) on product character-
istics and instrumenting for price via two-stage least squares regression (Berry, 1994). MPD
denotes miles per dollar. Vehicle age denotes the number of months since sales of the vehicle
(nameplate, model-year) commenced. Engine type is either gas, electric, or hybrid. Vehicle
type indicates style (e.g., SUV, sedan). Avg. of Speci�c Tests denotes the average across spe-
ci�c tests (moderate overlap front, small overlap front, side, and roof strength), each of which
is rated 1 (�poor�), 2 (�marginal�), 3 (�acceptable�), or 4 (�good�). Standard errors, clustered
by nameplate and model year combinations, are shown in parentheses.
* p<0.1, ** p<0.05, *** p<0.01
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A.2 Supplementary Information

Hershman, Page 4

analyzed the system, especially the implied precision
of the published test scores, and found that it was
confusing to consumers.  In response to 1992 Senate
Appropriations Committee requirements, NHTSA
performed a use study and in 1994 began
implementing new methods of informing consumers of
the comparative levels of the safety of vehicles
through NCAP.  

These new star ratings were designed to give
consumers a quick, simplified single point of
comparison between different vehicles.  The star scale
was based on a “Level of Protection Scale,” which
NHTSA developed to relate the probability of
sustaining an injury to the level of protection from
injury that a vehicle provides its occupants. NHTSA
mathematically combines the head and chest injury
measurements and produces a rating of one to five
stars, with five stars indicating the relatively highest
level of protection within the vehicle’s weight class.  

iiiii = 10% or less chance of serious injury
iiii = 11% to 20% chance of serious injury
iii = 21% to 35% chance of serious injury
ii = 36% to 45% chance of serious injury
i = 46% or greater chance of serious injury

Although it is impossible to assess how well a vehicle
provides protection in all circumstances using a single
test, NCAP ratings provide a useful basis for
comparing the relative crash safety of vehicles within
each class or grouping.

Since 1996, Japan NCAP has conducted the same full
frontal crash test program as the U.S. NCAP. 
However, Japan NCAP uses a letter category rating
system (A/B/C/D) based on head injury criterion and
chest acceleration, and it has further split the A
category into A, AA and AAA levels to further
discriminate vehicle safety performance.  For frontal
collisions, Japan NCAP rates injury risk to drivers and
passengers, plus door open-ability, rescuability and
fuel leakage.  In the 1990s, Australian NCAP issued
combined ratings based on full frontal and offset
frontal tests, but in 1999 it dropped the full frontal test. 

The relationship of the star rating system to injury
probability and to the range of HIC and chest G values
is shown in Table 1. 

Table 1.
Relationship of the Star Rating and Severe Injury
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Crash Testing for Side Collisions

In the past twenty years, car structures have been
optimized for the most frequent crashes, the frontal
crash.  After frontal crashes, side impacts are the most
serious type of automobile crashes causing injury and
death.  Though only one in four crashes is a side
impact, more than one-third of seriously injured
occupants sustained their injuries from vehicle side
impacts. 

NHTSA implemented a dynamic side impact
compliance test, FMVSS No. 214, in 1990.  It
simulates a 90 degree side impact, in which a moving
deformable barrier, representing the striking vehicle,
moves at 53.9 km/h (33.5 mph), crabbed at 27 degrees,
into the stationary struck vehicle.  NHTSA began
testing passenger cars in side impact in NCAP in
1997.  In the USA NCAP side impact, the striking
vehicle is towed at an 8 km/h (5 mph) higher speed
than in the compliance test. 

For side collisions, testing represents an intersection-
type collision with a 1,367.6 kilogram (3,015 pound)
nominal weight deformable barrier moving at 62 km/h
(38.5 mph) into a standing vehicle. Side collision star
ratings indicate the chance of a life threatening chest
injury for the driver and the left rear seat passenger.  If
the pelvic instrumentation in the crash test dummy
indicates a high likelihood of pelvic injury in the
lateral test, the consumer is also informed of this
possible injury. Head injury is not measured in these
tests.  Since all tested vehicles are impacted by the

Figure A1: NHTSA: Discrete Ratings Thresholds

Notes: The �gure shows the mapping between the two injury ratings and the discrete
frontal-collision crashworthiness rating from the NHTSA, prior to 2011 (afterwards
additional injury measures were included, precluding two-dimensional depictions). The
HIC denotes the head injury criterion, and the Chest G's denotes the g-force applied
to the dummy's chest in the staged collision. The percentages denote overall risk of
serious injury. Source: �New Car Assessment Program (NCAP): Past, Present, and
Future,� https://www-nrd.nhtsa.dot.gov/pdf/esv/esv17/Proceed/00245.pdf.
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Figure A2: Average Sales vs. Age

Notes: The �gure shows the evolution of sales from the time the vehicle is introduced
in the market. The scale on the horizontal axis corresponds to age in months since
introduction. The vertical axis corresponds to average sales volume. Vehicle sales
beyond 36 months are excluded.
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Figure A3: Changes in Equilibrium Prices When Continuous Ratings Are Reported

Notes: The �gure shows the predicted change in average price (across observed periods)
against the change in reported safety: continuous rating - 1(IIHS Badge). Each point
represents a single vehicle (nameplate and model year combination).
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Table A2: Mapping of Subratings to Side-Impact Crashworthiness Rating [IIHS]

Assigned Demerits if Subrating Equals:

Good Acceptable Marginal Poor

Vehicle Structure 0 2 6 10

Driver

Head Protection 0 2 4 10

Head and Neck 0 2 10 20

Torso 0 2 10 20

Pelvis and Femur 0 2 6 10

Rear Passenger

Head Protection 0 2 4 10

Head and Neck 0 2 10 20

Torso 0 2 10 20

Pelvis and Femur 0 2 6 10

Overall Side Rating Demerit Ranges 0-6 8-20 22-32 34+

Notes: This table is an adapted version of the table in IIHS's �Side Impact Crashwor-
thiness Evaluation�Weighting Principles for Vehicle Ratings.� The �nal discrete score
for the IIHS side crash test reported to consumers depends on the total demerits accu-
mulated based on the discrete subratings. Subratings themselves have sub-sub-ratings.
For example, the torso subrating depends on �ve sub-sub-ratings (peak rib de�ection,
average de�ection [across ribs], viscous criterion [ribs], rib de�ection rate, and shoulder
de�ection), each of which is assigned a discrete score (good, acceptable, marginal, or
poor) based on whether the measure exceeds certain thresholds. Each subrating equals
the worst of its sub-sub-ratings. If less than 6 demerits are assigned across the various
subratings, the overall discrete side crash rating is �good.� Between 8 and 20 demerits
corresponds to an �acceptable� side crash rating. And so on.
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A.3 Two-Vehicle Crashes Fatality Analyses

Earlier papers have taken a di�erent approach to addressing the main omitted variable

problem. Speci�cally, drivers with safer (or less safe) driving habits may disproportionately

choose vehicles with better observed discrete crashworthiness ratings. If not addressed, one

might attribute the impacts of safer driving habits to the inherent crashworthiness of rated

vehicles.

The most promising previous approach to this problem exploited Newton's 3rd law of

motion using two-vehicle accidents: in an accident, both vehicles exert equal force on each

other. Suppose that the fatality risk for a driver in an accident follows the binary logit

formula: Rj = exp(α+βXj)/[1+exp(α+βXj)], whereXj are variables potentially impacting

crashworthiness of vehicle j. Then, following Farmer (2005), the conditional probability that

the driver of vehicle 1 died given that exactly one of the drivers died equals:

R1 = exp(β(X1 −X2))/[1 + exp(β(X1 −X2))].

Note that the unit of observation in these analyses is a particular vehicle in an accident. The

number of observations equals twice the number of two vehicle accidents in which exactly

one driver died. In our sample of the FARS data, we had 3,741 two vehicle accidents in

which exactly one driver died, and for which we have information on the crashworthiness

measures and vehicle characteristics for both vehicles in the accident.

We augment this strategy in two ways. First, we include many vehicle features as

explanatory variables, including continuous measures from staged crash tests. Second, we

include the di�erence in the IIHS badge indicator. Recall that after controlling for the

continuous measures from staged crash tests that collectively determine whether a vehicle

is awarded an IIHS badge, the IIHS badge indicator captures the marginal impact of driver

selection. Suppose that the strategy proposed used by Farmer (2005) fully accounts for

selection of drivers with safer driving habits. Then the IIHS badge indicator that accounts for

remaining selection after controlling for the many continuous measures from the staged crash

tests should not explain which driver dies. If instead it remains signi�cant, it suggests that

driver selection remains an important confounder. This may result if the more aggressively

driven vehicle is in a more precarious situation after de�ecting from the initial collision. For

example, maybe the driver of a speeding vehicle does not die from the initial collision but

instead succumbs afterwards if remaining speed causes the vehicle to roll over or careen o�

the road, implying that the two vehicles in the same accident were not subject to the same

conditions.

The results are show in Table A3. Note that the coe�cient on the IIHS badge remains

negative and highly signi�cant, suggesting that selection of drivers with safer habits may

confound the two-vehicle analyses of vehicle crashworthiness in prominent papers in the
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literature (Farmer, 2005; Kullgren et al., 2010; Lie and Tingvall, 2002).
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Table A3: Fatality Analyses Using Two-Vehicle Accidents

Coe�cient (Std. Err.)

Di�erence Between Vehicles in:
Year Redesigned 0.018 (0.019)
I(Awarded Safety Badge) −0.207 (0.058) ∗ ∗∗

Frontal Crash Test Measures
Di�erence Between Vehicles in:
A-pillar Rear Movement (cm) 0.048 (0.017) ∗ ∗∗
Head HIC-15 0.000 (0.000)
Head Peak Gs 0.005 (0.001) ∗ ∗∗
Neck Bending Moment 0.001 (0.003)
Neck Max Force Nij −0.823 (0.304) ∗ ∗∗
Footwell Intr. at Center (cm) −0.009 (0.007)
Left Foot Acceleration (Gs) −0.003 (0.001) ∗ ∗∗
Right Femur Axial Force (kN) 0.004 (0.020)
Right Tibia Axial Force (kN) 0.537 (0.127) ∗ ∗∗

Side Crash Test Measures
Di�erence Between Vehicles in:
B-pillar Distance from Centerline (cm) 0.019 (0.005) ∗ ∗∗
Neck Tension Force (kN) 0.058 (0.067)
Sternum Max De�. Rate (ms) 0.028 (0.020)
Sternum Avg. De�ection (mm) −0.004 (0.004)
Femur L-M Moment (Nm) −0.001 (0.000)
Femur A-P Moment (Nm) −0.000 (0.001)
Left Femur Force (kN) 0.307 (0.073) ∗ ∗∗

Vehicle Characteristics
Di�erence Between Vehicles in:
Length (in) 0.006 (0.003) ∗ ∗
Width (in) 0.020 (0.018)
Height (in) −0.059 (0.007) ∗ ∗∗
Weight (100 lbs) −0.043 (0.010) ∗ ∗∗
Horse Power −0.002 (0.001) ∗ ∗
Engine Size (liters) −0.227 (0.082) ∗ ∗∗
Vehicle Age 0.012 (0.004) ∗ ∗∗

Observations 7481

Notes: Standard errors shown in the right column, in parentheses.
* p<0.1, ** p<0.05, *** p<0.01
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A.4 Supplemental Crash Test Analyses Using CRSS Data

In this section, we supplement the analysis of vehicle crashworthiness in Section 4.1 by

considering additional measures of adverse events in crashes. In Section 4.1, we focused on

driver fatalities using the FARS dataset, which excludes non-fatal accidents. In this section,

we use a di�erent dataset to explore the relationship between vehicle characteristics and

other adverse outcomes, such as accident frequency, likelihood of minor injury, and likelihood

of major injury. We could in principle construct alternative continuous measures to the ones

described in Section 4.1 that instead re�ect the vehicle's ability to protect occupants from

major injury. Additionally, we can examine whether the estimated coe�cient on IIHS badge

indicator�purportedly a measure of driver selection�is consistent with driver selection as

the mechanism when we focus on the propensity of a vehicle to be in an accident of any

severity.

For this analysis, we utilize CRSS data, which include multiple measures of driver

injuries�minor, major or fatal�for all vehicular crashes occurring within 60 sampling sites

within the United States between 2011 and 2017. Based on these data, we can construct

the likelihood of an adverse outcome in a collision:

P (yjt = 1) =
exp(xj`tγ`t)

1 + exp(xj`tγ`t)
. (15)

That is, conditional on a crash, we can model each measure of driver injury yjt as a logistic

regression. Similarly, we can also model the unconditional propensity of a vehicular crash

similar to equation 2:

LL =
∑

j

∑

t

Djt × ln (F (xj`t|γ`t)) + (Qjt −Djt)× ln (1− F (xj`t|γ`t)) , (16)

where Djt is the number of vehicular crashes of nameplate-year j in period t and Qjt is the

cumulative production of j at t.44

The results are shown in Table A4. Column 1 indicates the unconditional propensity of

being in a vehicular accident, while columns 2�4 show the likelihood of injury conditional

on an accident. We regress these on the same set of regressors as Table 3 to maintain

consistency. Most of the continuous crash measurements follow the same sign as the main

fatality analysis.

We note that driver selection, measured by the coe�cient on the safety badge dummy,

persists to a�ect other outcomes of crashworthiness as well. Vehicles awarded a safety badge

are estimated to be 7% less likely to be involved into a crash. Conditional on being in an

44Because the CRSS samples only 60 sites across the United States, we scale overall cumulative production
numbers by the yearly proportion of driver fatalities from these sites (on average 3% of driver fatalities are
attributed to these sites) to create the representative cumulative production numbers for these areas.
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accident, badged vehicles are 5.6% less likely to sustain a major injury and 17.5% less likely

to die. These results�in particular the �rst�are consistent with safer driving practices

being a confounder for the �true� (mechanical) crashworthiness, indicating it needs to be

controlled for.

Next, in Table A5 we also create alternate measures of crashworthiness based on the

speci�cations from Table A4 above. We �nd that most measures bear a high correlation

with our preferred measure of crashworthiness based on unconditional driver fatalities, from

Section 4.2.
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Table A4: Relating Fatal Accident Rates to Crash Test Measurements

Unconditional Conditional on Crash
Propensity Any Injury At Least Maj- Death
of Crash or Injury

Year Redesigned 0.0309*** 0.0018 -0.0030 0.0010
(0.0060) (0.0046) (0.0093) (0.0258)

I(Awarded Safety Badge) -0.0721** 0.0096 -0.0578* -0.1796*
(0.0285) (0.0176) (0.0333) (0.1053)

B-pillar to Driver Seat 0.0070*** 0.0039** 0.0032 -0.0033
Centerline (cm) (0.0022) (0.0019) (0.0035) (0.0102)

Neck Tension Force (kN) 0.0266 -0.0331* 0.0194 0.2065**
(0.0236) (0.0193) (0.0353) (0.1045)

Sternum Max De�. Rate (ms) 0.0250*** 0.0298*** 0.0458*** -0.0024
(0.0083) (0.0056) (0.0099) (0.0327)

Shoulder Lateral De�ection (mm) 0.0012 -0.0008 -0.0034* -0.0050
(0.0017) (0.0010) (0.0018) (0.0052)

Femur L-M Moment (Nm) 0.0006*** -0.0001 0.0005** 0.0012*
(0.0002) (0.0001) (0.0002) (0.0007)

Femur A-P Moment (Nm) 0.0002 -0.0001 -0.0001 -0.0005
(0.0002) (0.0002) (0.0003) (0.0007)

A-pillar Rear Movement (cm) -0.0113 0.0023 0.0269** 0.0556*
(0.0076) (0.0075) (0.0125) (0.0332)

Head HIC-15 -0.0002 0.0001 0.0002 -0.0003
(0.0001) (0.0001) (0.0002) (0.0005)

Head Peak Gs -0.0004 0.0000 0.0006 0.0016
(0.0003) (0.0003) (0.0005) (0.0013)

Footwell Intr. at Footrest (cm) 0.0046 -0.0087** -0.0001 0.0125
(0.0052) (0.0037) (0.0070) (0.0214)

Footwell Intr. at Left (cm) 0.0001 0.0091*** 0.0014 0.0030
(0.0044) (0.0032) (0.0062) (0.0166)

Footwell Intr. at Right (cm) -0.0084** 0.0048* -0.0021 -0.0142
(0.0040) (0.0028) (0.0051) (0.0146)

Left Femur Axial Force (kN) -0.0117* 0.0099 -0.0044 -0.0086
(0.0066) (0.0070) (0.0128) (0.0324)

Right Femur Axial Force (kN) -0.0207** -0.0035 0.0184 0.0346
(0.0089) (0.0060) (0.0118) (0.0350)

Right Tibia Axial Force (kN) -0.0182 0.0625 0.1826** 0.2146
(0.0595) (0.0401) (0.0802) (0.2340)

Right Foot Acceleration (g) 0.0003 -0.0006** -0.0004 -0.0017
(0.0003) (0.0003) (0.0005) (0.0015)

Vehicle Age FE Y Y Y Y

Time FE Y Y Y Y

Observations 58,759,565 142,527 142,527 142,527

Standard errors are shown in parentheses.
* p<0.1, ** p<0.05, *** p<0.01
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Table A5: Correlating Predicted Crashworthiness From Crash Outcomes and Driver Fa-
talities

CRSS Outcomes
Conditional on Crash

Propensity Any Injury At least Fatality
of Accident Major Injury

FARS Fatality -0.0308 -0.1429 0.9451 0.9111
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